Language & Communication, Vol.2, No. 1, pp. 57-89, 1982.
0271-5309/82/010057-33 $02.00
Printed in Great Britain.
Pergamon Press Ltd.

LANGUAGE ACQUISITION, DATA COMPRESSION

AND GENERALIZATION
J. GERARD WOLFF*

Introduction

This article is concerned with a continuing attempt to develop an empirically adequate theory of first language acquisition building on previous work by the author which will be outlined below.1 The theory in its current state of development is embodied in a computer model, program SNPR, which will be described together with illustrative results.

One important aim in developing this model has been to explore the nature of generalization processes which may explain how, given only the finite corpus of language heard during childhood, we can learn to produce and comprehend an infinite range of novel but grammatically acceptable utterances. In particular, an attempt has been made to under​stand how acceptable generalizations which need to be retained in the developing language system can be distinguished from unacceptable ‘overgeneralizations’ (like children’s mouses or buyed) which must eventually be eliminated even if there is no error correction by a ‘teacher’ or informant. Syntactic overgeneralizations like these have been considered before (e.g. Braine 1971, Ervine 1964, Slobin 1971) but it seems that this is the first serious attempt to answer the question posed. Semantic generalizations and over-generalizations will not be discussed, although the principles described here may prove relevant to that domain.

Previous work on the project will be described together with a statement of methodology. This will be followed by a discussion of ‘cognitive economy’ and its relevance to language acquisition. The proposal to be developed is the notion that certain aspects of language acquisition are manifestations of data compression principles which have the effect of optimizing the balance between space required for storage of cognitive structures and the effectiveness of those structures for the economical encoding of cognitive data. Related ideas which have been put forward before (Horning 1969, Feldman 1972, Cook and Rosenfeld 1976, Coulon and Kayser 1978) are extended and elaborated here. This section on cognitive economy will serve as a basis for discussing generalization and for the description of SNPR which follows.

There is, of course, some overlap with other attempts to create working models of language acquisition or to .construct grammar discovery procedures. (See reviews by Biermann and Feldman 1972, by Fu and Booth 1975 and by Pinker 1979. Also articles by Anderson 1977, Gammon 1968, Hamburger and Wexler 1975, L. R. Harris 1977, Z. S. Harris 1970, Kelley 1967, Kiss 1973, Knobe and Knobe 1976, Olivier 1968, Power and Longuet​Higgins 1978, Salveter 1979, Siklossy 1972, Stolz 1965, Wexler and Culicover 1980.) Reference to some of these studies will be made at appropriate points below.

Methodology and background

The method of theory development which has been employed is to identify and attempt to solve manageable sub-problems and then to integrate, modify and extend the

*Dept. of Psychology, The University, Dundee DD1 4HN.

57

58
J. GERARD WOLFF
answers, using empirical data together with pre-established theory as clues to the nature of acquisition processes and as checks on the validity of theoretical proposals. At each stage in this ‘bootstrapping’ process, target criteria of success or failure are established which are progressively tightened in succeeding stages.

By exploring the properties of simple mechanisms which have complex implications and by relating these properties to known features of language development we may, in the interests of theoretical parsimony, hope to find simplicity behind the apparent complexity of language acquisition. An imperative feature of this approach is that theoretical proposals be embodied in computer-based working models which can run through the implications quickly and accurately. In the course of this project a number of apparently promising ideas have been subjected to this discipline—and most have been discarded.

The main effort to date has been the development of a computer program or programs which, given only a language-like text as data, will be capable of discovering or retrieving the grammar which was used to create the text. Examples of grammars and texts are shown in Fig. 1. Whether or not this is accepted as a reasonable sub-goal in the search for sufficient mechanisms to explain the phenomena of language acquisition depends on an acceptance of these texts as analogues of the linguistic data available to children.

The simplest view of the texts is that they correspond to the speech which young children hear, although they differ from speech in obvious ways. Letters in a text may be seen as representing discrete perceptual elements roughly equivalent to phonemes or something smaller and simpler than phonemes: features, formant ratios or the like. The assumption implicit in the use of discrete symbols is merely that linguistic material, at some (fairly low) level, is encoded as discrete ‘perceptual primitives

Phrase-structure grammars (PSGs) like those shown in Fig. 1 are, of course, insufficient to handle natural language, but they are a simple embodiment of two structural principles which seem to be prominent (perhaps universal) features of natural languages: segmental (syntagmatic) and disjunctive (paradigmatic) groupings of linguistic elements. They can also express a number of other characteristic features of natural languages, and they can thus serve as a useful test-bed for discovery procedures intended ultimately for use with natural languages.2 The first grammar in Fig. 1 shows, in its first rule, a discontinuous dependency between PUT and ON. Notice that the relation between these two elements is independent of the complexity of rule 2 which separates them; despite assertions to the contrary (e.g. Postal 1964), PSGs are quite capable of expressing discontinuous depen​dencies between constituents. Overlap amongst word classes, which is another prominent feature of natural languages, appears in the grammar of Text 2, where the classes described by rules 1 and 3 both contain the word IT. The grammar of Text 3 exhibits a hierarchical organization in that rule 1 has to be unpacked in two stages before all its terminal symbols are reached. The Text 4 grammar contains a null element expressing the optional nature of the word SOME, and the last grammar shows recursion. Texts 5 and 6 will be considered later.

These texts do not contain any representations of meanings and there are no overt markers of segmental structure corresponding to pause or stress in natural languages. The omission of these structural cues may be justified on the grounds that it is heuristically valuable to see what can be achieved without them despite their probable relevance to a fully developed theory of language acquisition. Although these texts are semantics-free it has been supposed that principles and processes developed to abstract structure from them

LANGUAGE ACQUISITION, DATA COMPRESSION AND GENERALIZATION
59

Text 1

((l)PUT(2)ON | (1)MADE(2)

1 (JOAN | LIZ | YOU | HE

2 (SOME | THEM | FOUR | IT

Sample: YOUPUTITONHEPUTTHEMONHEMADEITLIZMADESOME …

Text 2

((1)(2)ES(3) | (4)(2)(3)
1 (IT | TOM | JANE | JOAN

2 (MISS | WATCH

3 (BIRDS | LIZ | THEM | IT

4 (YOU | MEN | WE | THEY

Sample: TOMMISSESTHEMYOUWATCHBIRDSTHEYMISSLIZ ...

Text 3

((1)(4)(5) | (6)(7)(8)
1 ((2)(3) | JOHN

2 (A | THE

3 (BOY | GIRL

4 (LIKES | ATE

5 (FISH | MEAT

6 (WE | THEY

7 (WALK | RUN

8 (FAST | SLOWLY

Sample: AGIRLATEFISHTHEYWALKFASTJOHNATEMEAT …

Text 4

((1)(2)(3)(4) | (5)(6)(7)

1 (BOB | MARY

2 (LIKES | ATE

3 ((| SOME

4 (FISH | MEAT

5 (WE | THEY

6 (WALK | RUN

7 (FAST | SLOWLY

Sample: WEWALKSLOWLYMARYATEFISHMARYLIKESSOMEMEAT ...

Text 5

((1)(2)(3) | (4)(5)(6)

I (DAVID | JOHN

2 (LOVES | HATED

3 (MARY | SUSAN

4 (WE | YOU

5 (WALK | RUN

6 (FAST | SLOWLY

Sample: JOHNLOVESMARYDAVIDHATEDMARYYOURUNSLOWLY ...

Text 6

This text has the same grammar as Text 5 but all instances of JOHNLOVESMARY and WEWALKFAST are omitted.

Text 7

((1)(2)(3)(4) | (5)(6)(7)

1 (A | THE

2 (VERY | VERY(2)

3 (FAST | SLOW

4 (CAR | SHIP

5 (SOME | FEW

6 (LARGE | SMALL

7 (MEN | BOOKS

Sample: SOMESMALLMENAVERYVERYSLOWSHIPTHEVERYFASTCAR …

Fig. 1. Six grammars used to create seven texts for analysis by discovery procedures. Small samples of text are shown with each grammar. Brackets are used to distinguish terminal from non-terminal symbols. Vertical bars mean exclusive OR.

60
J. GERARD WOLFF

may prove relevant to the non-linguistic domain (see Wolff 1976) and to a unified model which would abstract an integrated structure of linguistic and non-linguistic cognitions.3 Meanings seem not to be actually necessary for experimental subjects to learn something of the structure of artificial languages, but they do seem to be helpful (Moeser and Bregman 1972, 1973). Similarly, there is evidence that adult subjects can develop some sensitivity to the segmental structure of artificial speech without the need for overt segmental markers (Hayes and Clark 1970). Further, it seems unlikely that children could learn segmental structure exclusively from such markers because many segment boundaries in natural speech are not marked by either pause or stress.

Another presupposition of this project is that children are capable of constructing their language system by observing language in use, without the intervention of any kind of ‘teacher’. They do not need to produce overt speech in order to learn a language (Lenneberg 1962, Brown 1954) and thus they do not need anyone to correct mistakes or otherwise provide positive or negative reinforcement of any kind (Chomsky 1959). This belief is of some significance because it rules out a class of mechanisms for correcting overgeneralizations. It is not shared by some other workers in this field (Klein and Kuppin 1970, Knobe and Knobe 1976, Power and Longuet-Higgins 1978). Another assumption of the project is that children do not need to hear ‘baby talk’ or other special forms of adult language in order to learn a language (see Wexler and Culicover 1980). One further assumption which may be mentioned is that language acquisition is an incremental or evolutionary process rather than a process of wholesale selection and rejection of pre​established grammars (see also Hamburger and Wexler 1975). Presuppositions of the project are discussed more fully in another paper (Wolff 1980b).

The target problem has been tackled in two stages corresponding to the two structural principles mentioned earlier. The first sub-goal or target was to develop a program which could discover the segmental structure of language-like texts without the need for any overt segment markers. A solution was found in program MK10 which is capable of isolating ‘word’ and ‘sentence’ segments from artificial language texts like those shown in Fig. 1 (Wolff 1975). The program builds a set of hierarchically related segments or elements which is equivalent to a set of re-write rules of productions—a PSG in fact. An integral part of the program is a parsing routine which assigns segmental structure to the text in accordance with the current state of the grammar. The performance of the program may be judged from the structure of the grammar and also from the correspondence between the known structure of the text and parsings assigned by the program.

The second target was to modify or extend MK10 so that it would not merely discover the segmental structure-of the sample text but would retrieve the grammar used to generate that text. Program GRAMI5 (Wolff 1978a, b) is an extension of MK10 which seeks disjunctive classes of elements amongst the elements created by MK10 and at the same time modifies the grammar built by MKI0 to produce a new P5G. For each of the first four texts shown in Fig. 1 there is a satisfactory match between the grammar created by MK10/GRAM15 and the grammar used to construct the original text. These grammars are successfully retrieved, however, only if MK10 is stopped exactly at the point where all the ‘sentence’ types in its sample text have been built up. This is a significant weakness of these two programs which SNPR was designed to correct.

Although MK10 was developed with the limited objective of isolating segments from artificial texts, it has also been run on unsegmented natural language texts both alphabetic

LANGUAGE ACQUISITION, DATA COMPRESSION AND GENERALIZATION
61

(Wolff 1977) and phonetic (Collet and Wolff 1977). There is a good correspondence between the word structures of these texts and parsings developed by the program, and there are interesting similarities between the way the program adds words to its dictionary and patterns of vocabulary growth in children (Wolff 1977). The program is also apparently relevant to the abstraction of surface structures in natural language (Wolff 1980b).

Efficiency and data compression

The theoretical developments mentioned so far seem to have made reasonable contact with empirical data not only in meeting the target criteria but also in other ways which were not anticipated at the outset. Theory construction has not, however, been merely a data-driven bottom-up process but has, as indicated earlier, been guided in a top-down mode by pre-established theory. A biological perspective serves to remind us that the systems being investigated, and indeed brain structures and functions generally, are the products of evolutionary processes of natural selection and they are, in consequence, likely to be governed in some sense by principles of efficiency.

There are obvious affinities here with Zipf’s (1949) Principle of Least Effort and with the notion of cognitive economy which has been of intermittent and sometimes controversial interest in psychology since the 1950s (Attneave 1954, 1959, Oldfield 1954, Conrad 1972). A rigorous definition of some putative Law of Maximal Efficiency would, in accordance with Zipf’s ‘singular of the superlative’, need to define a unified measure of efficiency which, in turn, would probably incorporate unified notions of benefit and cost. The latter might be defined as some multiplicative blend of information storage and transmission, while the former would cover such concepts as speed, accuracy and reliability, with allowance for the variable importance of these elements in various task domains. Whether or not such a law could be defined with sufficient precision to permit validation is probably not important for our theoretical purposes. We need only recognise that selection pressures are likely to have favoured modes of information processing which increase the effectiveness of cognitive operations or reduce their computational costs, or both.

Prime candidates here are techniques for reducing or eliminating redundancies in data. They have an obvious relevance to information storage, but their impact can be at least as great on information transmission—from one person to another or from one part of the nervous system to another. So great are the potential advantages of data compression principles in increasing the volume of data that may be handled by a given system, or in reducing costs for a given body of data, that it is hard to imagine how any biological information processing system could evolve without incorporating some at least of these principles in one form or another. The general tendency of vertebrate and invertebrate nervous systems to respond to changing rather than homogeneous conditions, exemplified by the phenomena of habituation, lateral inhibition and compensation (Von Békésy 1967), by ‘on’, ‘off’ and ‘on-off’ responses of nerve cells, is familiar evidence in support of this position (see also Barlow 1969). A basic supposition of the work described in this article is that data compression principles provide a useful perspective on the form and functioning of linguistic and non-linguistic cognitive structures and, in particular, on the processes which acquire, discover or create those structures.

The view to be described, that linguistic and cognitive development can be usefully seen as a process of optimising a cognitive system using data compression principles, contrasts

62
J. GERARD WOLFF

with the view typically adopted in other studies, that language acquisition is a process of discovering a ‘target’ grammar or cognitive system. There is at least one logical problem arising from the latter view which has been spelt cut by Gold (1967) and which will be considered briefly at the end of the article.

We shall proceed to consider the role of data compression in language acquisition, but first it is as well to emphasise that the form of cognitive structures is probably con​ditioned in a complex way by the several functions that they perform—they are not merely minimum redundancy versions of sensory data. There is, for example, no conflict between the view expressed here and multiple-copy theories of memory with all the redundancy they imply. Indeed, to the extent that memory traces are replicated there is an advantage in minimizing the storage required for each trace. This issue aside, we may expect to find redundancies in cognitive structures because they can increase the reliability of cognitive processes and they can increase processing speeds: information which is stored in a compressed form can be slow to retrieve. We should also remember that data compression is itself a processing cost which may not always be justified by the benefits obtained.

Redundancy clearly has a role in cognition, but this does not invalidate our view that compression can give useful insights into acquisition processes and can illuminate our target problems. In the rest of this section five candidate compression principles will be described, with some discussion of their possible roles in language acquisition. This discussion will be extended in the following sections on generalization and program SNPR.

Compression principles

1. Where a pattern occurs more than once in perceptual input then it may be advan​tageous to record the structure of the pattern only once, and then replace each of its occurrences by a label, pointer or reference number which identifies the record (Schuegraf and Heaps 1974). For example, a sequence ABCDPQRABCDABCDPQRABCDPQRPQR may be reduced to (x)(y)(x)(x)(y)(x)(y)(y), where x is a pointer to the pattern ABCD and y is a pointer to PQR. The use of subroutines and calls in computer programs is a familiar example of this device, which is essentially the same as Miller’s (1956) notion of chunking.

2. Where two or more patterns share one or more contexts then they may be grouped into a disjunctive set which may be accessed via its pointer in the same way. For example, the sequences ABCIJKDEF and ABCLMNDEF may be collapsed into ABC(x)DEF, where x is a pointer to the disjunctive group LMN | IJK (Kang et al. 1977).

3. Where conflicting syntagmatic groupings are possible then it is advantageous to choose the grouping which will include the greatest amount of the input corpus. In general, frequently occurring groupings are preferred to less frequent ones and big ones are preferable to little ones, so that the product of frequency and size is maximized. For example, in the sequence ABCDPQRABCDABCDPQRABCDPQRPQR, given above, there are repeating sequences like CDPQ and RAB which could be formed into chunks. It should be clear, however, that greater compression is achieved by using the chunks ABCD and PQR, which occur more frequently. Likewise, ABCD and PQR are more useful than smaller chunks like ABC or PQ.

Similar arguments apply in the case of disjunctive groups: frequent groups are more potent

LANGUAGE ACQUISITION, DATA COMPRESSION AND GENERALIZATION
63

for compression than rare ones, and the frequency of a disjunctive group usually increases with the addition of new elements to the group.

4.
If a pattern is repeated as a sequence of contiguous instances then the sequence may be reduced to one instance of the pattern coded for repetition, perhaps also with a record of the number of instances. This method of reducing redundancy is a compression technique with communication engineering applications (e.g. Ruth and Kreutzer 1972) and corresponds approximately with the previously mentioned tendency of nervous tissue to respond more to changing than to steady or homogeneous stimulation. Recursion is a similar device which will be discussed in connection with the fifth principle and with generalization.

5.
The last compression technique to be mentioned, which is superficially the crudest, is simply to ignore parts of the data to be coded or to delete parts of the record, or both. Crude as it seemingly is, this technique is related directly to generalization, as will be seen. The notion of ‘schema plus correction’ (Attneave 1954), which has not been mentioned so far, is implicit in each of the first two of our compression principles. When a symbol sequence is coded by joining two chunks of data together, then one of these chunks may be regarded as a ‘schema’, while the other can be seen as a ‘correction’ to that schema. In this case the roles of schema and of correction may be interchanged. In the case of disjunctive relations, a pattern like ABC(x)DEF, described above, may be regarded as a schema which can be used to encode a symbol sequence if it is ‘corrected’ by the specification of one out of the set of alternatives referenced by the pointer x. If that set contains a null element (or if every symbol in the schema is regarded as being in paradigmatic relation with a null element) then it is possible, by specification of one or more null elements, to give expression to the logical operator NOT. As pointed out elsewhere (Wolff 1976), it is often useful in the quest for cognitive economy to be able to delete or negate one or more parts of a pattern.

These compression principles probably do not exhaust the possibilities, but they will serve for the present discussion. That some of them at least are relevant to language acquisition is evidenced by familiar features of language itself. It is hardly possible to describe language structure without using segmental and disjunctive groupings (principles 1 and 2) and recursion (principle 4). At the level of semantics, the use of words as pointers to complex conceptual structures is a clear example of the first principle. The role of frequency in language acquisition is considered briefly below and more fully in the final discussion.

There is, of course, abundant evidence for the psychological significance of language segments like phrases and clauses (e.g. Johnson 1965, Wilkes and Kennedy 1969) and the word structure of language has clear psychological relevance even for young children. They show themselves sensitive to word boundaries in their single word utterances and in those inventive combinations like more high (Braine 1963) which are not likely to have been taken directly from adult speech.

Groupings of words by shared context was an important feature of taxonomic linguistics (e.g. Fries 1952). Kiss (1973) and Rosenfeld et al. (1969) have shown how cluster analysis based on commonality of contexts may produce word groups which resemble the part of speech groupings traditionally recognized by linguists. There is some evidence for the psychological significance of word classes from studies of speech errors (Fromkin 1973). Weir’s (1962) study provides some evidence that children actually do search for groupings

64
J. GERARD WOLFF

with shared contexts. Her young son, in his pre-sleep soliloquies, produced several sequences of utterances where the utterances in each sequence had a word or a group of words in common (e.g. Go for glasses; go for them; go to the top; go throw; go for blouse and On the leg; Anthony’s leg; put some Mommy’s legs; Mommy’s legs).

Some but not all of our compression principles are exemplified in program MK10 which, as we have seen, operates by building a set of elements which is equivalent to a PSG. The first principle is exemplified in the way these elements or chunks can be used for the economical coding of the data from which the grammar was abstracted or other data having similar structure. Since many of the elements are constituents of other elements, the same principle is used to reduce the storage demands of the set, which thus acquires an hierarchical organization. In accordance with the third principle, frequent elements are selected in preference to rare ones and then, for a given frequency of occurrence, elements are built to be as large as possible. Owing to the fact that in natural and artificial language texts the frequency of a symbol string is approximately an inverse power function of its length, this search strategy, which gives priority to frequency, is more likely to maximize the product of frequency and size than the alternative strategy giving priority to size. The relevance to language acquisition of this kind of frequency-guided search has been demonstrated at the level of words (Olivier 1968, Wolff 1977) and of phrases (Stolz 1965, Wolff 1980b).

The parsing problem in MK10 is to choose from amongst the manifold possibilities a segmentation which maximizes the average size of the elements assigned to the text. The routine used in MK10 simply seeks the biggest element available to match the text at successive points in the text, so that much less processing is required than other seg​mentation routines like the shortest-path algorithm employed by Olivier (1968). This device, like the use of frequency information to minimize search times, allows speedy processing, but the benefit is obtained at the expense of the occasional occurrence of ‘run-on’ errors (Wolff 1975, 1977) and failure to maximize the average size of elements. This trade-off provides an interpretation for the similar ‘garden-path’ errors which we occasionally make in language comprehension. It is one example of the several trade-offs which seem to operate in cognition under the rubric of efficiency. In program GRAM15, the second of our compression principles is exemplified by the creation of disjunctive groups of elements. This operation, which is governed by the third principle much as in MK10, allows a dramatic reduction in the size of the grammar created by MK10, although there is some offsetting cost which will be considered later.

We can see, then, how the first three of our data compression principles are embodied in programs MK10 and GRAM15, and how data compression is promoted in two distinct ways. The programs serve to create grammars which can encode data economically for storage or transmission. They also serve to minimize the sizes of the grammars themselves. The effectiveness of a grammar for compressing data (its ‘compression capacity’ or CC) may be defined as (V-v) / V, where v is the volume, in bits, of a body of data after encoding by the grammar and V is the volume of the data in unprocessed form. Compression values of a similar kind for MK10 have been presented previously (Wolff 1977). The size (Sg) of a grammar is simply the number of bits of information required to specify it.

CC and Sg are not usually independent. A trade-off exists such that an improvement in CC may be achieved at the expense of a larger grammar and vice versa. In these circum​stances it would seem necessary to assign weights to CC and to Sg, representing their

LANGUAGE ACQUISITION, DATA COMPRESSION AND GENERALIZATION
65

relative importance biologically, so that an optimum balance may be found between the two. A priori, however, we do not know what these weights should be. In fact, such a decision on priorities can be largely shelved when grammar construction is begun. By building a grammar in such a way that CC increases monotonically with Sg then the decision about the balance between Sg and CC becomes largely a decision about when to stop the building process.

Whatever this decision, it will always be advantageous to maximize CC for a given Sg. Therefore it is appropriate, at every step, to choose that structure which gives the greatest improvement in CC for unit increase in Sg. Generally speaking this means choosing frequent structures before infrequent, and maximizing size for a given frequency much as in MK10. In a system like this the gains in CC for unit increase in Sg will decrease pro​gressively, and the compression value of a grammar (CVg), defined as CC/Sg, will therefore change as the analysis proceeds. In discussion below, the value of CV for any given S will be referred to as CVg[Sg]. When CVg is referred to in this way, the intention is to emphasize that comparisons between values of CVg should only be made when their corresponding S values are equal.

The chief shortcoming of MK10 is that it cannot recognize disjunctive relations and cannot therefore take advantage of corresponding reductions in storage costs which disjunctive structures make possible. One aim in developing SNPR was to get rid of the unnatural division between processes for establishing syntagmatic and paradigmatic relations which exists in MKIO/GRAM15; these two processes have been integrated in SNPR so that both may operate from the beginning of grammar construction. One advantage of this integration is that successful retrieval of a grammar does not depend on the first process being stopped at any particular point.

Despite its shortcoming, program MK10 serves to illustrate a general point concerning the relative importance of size and frequency of grammatical structures. Each addition of a new element to the grammar built by MK10 allows a reduction in the size of a coded text equal to f(S-s), where f is the frequency of the element in unit text, S is the size of the element and s is the size of the pointer used to replace the element. The storage cost of this element is equal to its size (S) or perhaps a little less, depending on the extent to which compression principles can be applied to the grammar itself. We shall suppose that the storage cost of an element is a fixed proportion (q) of S. If the compression value of an element (CVe) is defined as the reduction which it allows in unit text for unit storage cost then:

[image: image1.png]S(S-5) f(l-s/S)'
) Sq - q

cv,

From this formula it is clear that CVe increases in direct proportion to f but it is a negatively accelerated function of S. Here then is a second reason, additional to that mentioned above, for giving priority to frequency in the search for new elements.

So far in this section we have considered the first three of our compression principles in relation to programs MKI0 and GRAM15. The third and fourth principles are intimately connected with generalization and will be discussed in the next section under this head. The notions considered in these two sections will provide a foundation for the subsequent description of program SNPR.

66
J. GERARD WOLFF

Generalization

Generalization is related to data compression through our fifth principle: that we may make economies by simply discarding some of our data. Consider the simple text given earlier to illustrate the first compression principle: ABCDPQRABCDABCDPQRABCDPQRPQR may be coded as (x)(y)(x)(x)(y)(x)(y)(y) if x (ABCD and y (PQR. The two re-write rules are a simple grammar which, in conjunction with the coded sequence (x)(y)(x)(x)(y)(x)(y)(y), constitutes an exact, faithful record of the original text. If we discard the coded sequence we have lost some of the original data but, in the grammar, we have retained some useful information about the structure of the text.

Implicit in this grammar are other sequences of non-terminal symbols like (y)(x)(x)(x)(y)(y)(x)... and (x)(y)(y)(y)(x)(y)(x)... and many others, each of which may be decoded into a corresponding text. These, then, are inductive generalizations or predictions derived from the original text. In this rather trivial sense of generalization, the grammar produced by MKI0, with or without further processing by GRAM15, can be said to generalize from its data. Indeed, the elementary grammar with which MK10 is equipped at the start of processing (1 (A1 | B1 | C1 | . . . | Z1 | () can also be said to generalize from the text.

The limitation of the two programs in respect of generalization is that the generative potential of every re-write rule is restricted to sequences of terminal symbols correspond​ing to symbol sequences in the original corpus. There is no possibility with either program of creating productions which will generate sequences of symbols not found in the sample from which the grammar was abstracted.

A solution to this problem is provided by the technique employed by Cook and Rosenfeld (1976) and Harris (l977)4 for reducing the size or complexity of a grammar. If a production or all its terminal strings can be generated by another production, then the first production, which may be said to be ‘covered’ by the second, may be replaced by that second production.

Consider, for example, a grammar like this:

1 (NP V NP | NP is A

2 (NP V NP

3 (NP said that (2).

Rule 2 is covered by rule 1, so that it may be deleted and pointers to the production may be replaced by 1. The grammar may thus be reduced to the following form:

1 (NP V NP | NP is A

3 (NP said that (1).

As a result of this simplification the grammar can generate the new string NP said that NP is A.

If this technique is employed so that part of a rule is replaced by the rule itself then the result is recursion, the fourth of our data compression principles (see Harris 1977). Consider, for example, the following grammar:

1 (NP V NP | NP said that (2)

2 (NP V NP.

If 2 is deleted and its pointer replaced by 1 then we arrive at a structure like this:

1 (NP V NP | NP said that (1).

LANGUAGE ACQUISITION, DATA COMPRESSION AND GENERALIZATION
67

This is a recursive structure which will predict:

NP said that NP VNP

 and NP said that NP said that NP VNP

 and NP said that NP said that NP said that NP VNP

etc.

We can see from these examples how a reduction in the size of a grammar can lead to an increase in its ‘range’, the variety of terminal strings which the grammar can generate. As Cook and Rosenfeld (1976) have pointed out, there is a trade-off between the com​plexity or size of a grammar and what they call its discrepancy, roughly the same concept as range.

Basic information theory indicates that the specification of one out of many alternatives requires more information than identifying one from amongst a few possibilities. Thus, generally speaking, an increase in discrepancy or range means an increase in the information required to encode a text and thus a reduction in CC. In short, the trade-off between complexity and discrepancy is essentially the same as the trade-off between Sg and CC which we encountered in the previous section.

• It is instructive in this connection to compare two primitive grammars. The one men​tioned earlier (1(A1 | B1 | C1 | … | Z1 | () is essentially a list of the basic symbols used in a text. Such a grammar can be regarded as a very compact (if crude) statement of the structure of the input corpus. This paucity of information about the structure of the text leads the grammar to generalize to an infinite variety of other alphabetic texts. The compactness of the grammar contrasts with its inability to introduce any compression into its encoding of the sample text—its CC is zero. The second primitive grammar is one with a single re-write rule of the form: 1(the complete sample of text. Unlike the first example, this grammar is not at all compact and does not generalize, but it can encode the sample text using just one bit of information. A ‘realistic’ grammar for a text sample is some kind of compromise between these two extremes.

At first sight, reductions in the size of a grammar and corresponding increases in its range are merely a reversal of the building process described in the last section, which offers nothing but a reduction in Sg with a corresponding reduction in CC. This view is too simple, however, because it overlooks the facts that we are at all times trying to maximize CVg[Sg] and that simple building processes alone may not achieve this. If processes for increasing the size of a grammar are interwoven with other processes for reducing its size and if, at every stage, we try to maximize CVg[Sg] we may hope to avoid ‘local peaks’ in the hill-climbing search. When the size of a grammar is reduced by the formation of disjunctive classes there may be some decrease in CC, but it seems that the reduction in Sg is not, for the most part, completely offset by the fall in CC. The reduced grammar may have a better CVg than a grammar of the same size without disjunctive classes—an improvement in CVg[Sg]. Likewise, when reductions in Sg are achieved by deleting some rules and modifying others (and thus producing generalizations) there is not necessarily a completely offsetting reduction in CC. If some of the new strings predicted by the modified rules turn out to have some compression value, if their occurrence in the corpus is ‘confirmed’, then there may be an improvement in CVg[Sg].

The distinction between predicted strings which are confirmed in the corpus and those which are not suggests at first sight an answer to one of the central questions of this article: how does a child come to distinguish between legitimate generalizations which

68
J. GERARD WOLFF

are retained in his linguistic system and overgeneralizations which are weeded out? We can quickly see that this idea is false because, in a narrow sense of generalization, an utterance which has occurred in the sample from which linguistic knowledge is abstracted is not a generalization at all. As Chomsky (1957, 1965) and many others have stressed, most utterances of everyday use, including many that are grammatically acceptable, are novel and have never been encountered before. Why these are regarded as acceptable, while childish forms like hitted and mouses are not, is the problem confronting us.

The tentative answer offered in the next section seems to be a further example of the principle described above. By increasing the size of a grammar in a way to be explained, we can increase its CC more than enough to offset the increase in Sg so that there is an overall gain in CVg[Sg].

Program SNPR

The general principles which we have considered so far may now be reconsidered in a more concrete form: the program SNPR, which is an attempt to embody these ideas in a working model which can be tested against target criteria. The gap between general principles and a model which actually works is considerable. SNPR in its present state is the product of a fairly lengthy period of development in which several attempts at realising the principles were constructed and tested and generally found to fail in one way or another. Some reference will be made below to blind alleys of this sort which have been entered, but they will not be described exhaustively. To some extent, general theoretical principles evolved through experience with the several versions of SNPR but, in the interest of clarity, principles and realization have been presented one after the other.

The objectives or target criteria set for this program were these:

1.
That the program should be able to retrieve simple PSGs like those in Fig. 1 from unsegmented, semantics-free texts, much as MK10/GRAM15 can do.

2.
The program should generalize effectively. What this means in concrete terms for the artificial languages used is that it should be possible to construct a text containing less than the complete range of terminal strings of its grammar, and that SNPR should be able to retrieve the complete grammar from this incomplete text and thus predict the legitimacy of the missing terminal strings

3.
That the program should have a means of distinguishing legitimate generalizations like these from erroneous generalizations, and should be able to eliminate the latter while retaining the former.

4.
The program should seek syntagmatic and paradigmatic groupings at all stages of processing, and should not separate the two kinds of search as in MK10/GRAM15. As we have seen, a justification for this objective is the desirability of growing the grammar in such a way that CVg[Sg] is maximized at every stage, much as in MK10. Another justification, possibly more cogent, is that children clearly develop an early sense of both segments and classes and no sharp break is apparent, comparable with the division between MK10 and GRAM15.

5.
The process or processes which seek generalizations should also seek recursive structures successfully without ad hoc provision.

The current version of SNPR has been dubbed SNPR14. The number reflects the extent of the development process and the range of alternatives tried, although some of these were merely programming variants with no theoretical significance. SNPRI4 meets all

LANGUAGE ACQUISITION, DATA COMPRESSION AND GENERALIZATION
69

five criteria more or less successfully, except that no attempt has been made to seek null elements as in GRAM15, and the program fails in other ways which will be described.

Program SNPR14 (and procedure MK10/GRAM15) operates with elements of more than one type, which may be described here as a preliminary to what follows. Minimal or M elements are basic symbols used in the text, typically the letters of the alphabet. A syntagmatic or SYN element is any element which expresses syntagmatic relations in the text, and a paradigmatic or PAR element is one whose constituents are in paradigmatic or disjunctive relation to each other. SYN elements may be simple (S) elements, which are strings of two or more M elements like those formed by MK10, or they may be complex (C) elements. Each of the latter must contain at least one PAR element, or at least one C element, or both, amongst its constituents and it may also contain one or more M elements. Since PAR elements may themselves contain M, S or C elements as constituents, it is clear that C elements can be arbitrarily complex. An element of any type functions as the right-hand side of a re-write rule in a PSG and its reference number is equivalent to a non-terminal symbol on the left-hand side. There are points of similarity between the notion of an element, particularly a C element, and the concepts of schema (already mentioned), frame (Minsky 1975) and script (Schank and Abelson 1977). One of the features shared by these concepts is modularity, a desirable attribute of any cognitive system which is to be built or modified.

Outline description of SNPR

The basic concept of SNPR, which has remained more or less unchanged throughout the program’s development, is that it would ‘build’ elements by concatenation in the same way as MK10, but that a process like GRAM15 would operate at the end of every scan to find disjunctive groups and compress or ‘fold’ the grammar by using these groups. PAR elements and C elements would thus be introduced at an early stage, the parsing routine would be designed to recognize elements of all types, and the high frequency pair of elements selected at the end of each scan would comprise elements of any type.

This modification of the MK10 format means that the search for syntagmatic groupings is interwoven with the search for paradigmatic groupings, as our fourth criterion dictates, and it also means that concatenation of elements can lead to generalizations. A C element like (m)X(n)Y (where m (A | B and n (P | Q) may be created by concatenation of (m)X and (n)Y when the text contains only AXPY, BXPY and AXQY amongst the four possible terminal strings of this element. The string BXQY is a generalization predicted by the element (m)X(n)Y. Program SNPR14 forms generalizations in this way, but it can also form them in one other way to be described later.

One possible solution to the problem of overgeneralization which has been considered and rejected is that the program should keep a record of the symbol strings corresponding to elements identified during each parsing and should, at the end of each scan, completely rebuild the grammar from these strings using the folding mechanism. In the example above, the strings AXPY, BXPY and AXQY can be folded to produce (m)XPY and AXQY (or BXPY and AX(n)Y) with the elimination of the generalized string BXQY. Apart from the heavy computational cost of a complete rebuilding of the grammar after every scan, this idea is completely implausible because it would eliminate generalizations of all kinds, and would not therefore distinguish correct generalizations from incorrect ones.

70
J. GERARD WOLFF

An answer to this problem, which is the basis of the mechanism employed in SNPR14, is that the program should monitor the PAR elements contained at all levels within every C element, and should rebuild any PAR element and the C element which contains it if some of the constituents of the PAR element fail to occur within the context of the containing C element. Consider, for example, the strings AXPY, BXPY, AXQY and BXQY, which would each identify an element (m)X(t)Y (where m (A | B and t (P | Q | R). If these were the only instances of the element in a text sample, then the PAR element t would be rebuilt as an element with the structure P | Q which would replace t in the C element. If the PAR element P | Q already exists in the grammar as, say, n then the C element would become (m)X(n)Y. If P | Q does not already exist then it would be given its own number, say p, and the C element would become (m)X(p)Y. Notice that t is replaced only in the C element which led to its rebuilding. The presence of R in t may seem arbitrary, but comparable examples will be seen in the results presented later.

The same ideas may be illustrated with a more real-life example using phonetic symbols (in which certain complexities of phonological and semantic conditioning have been glossed). A syntactic/semantic structure like PLURAL((1)(z) (where 1(boks | mat(| kis | maus | ...) would correctly generate words like /boks(z/, /mat((z/ and /kis(z/, but would also produce the childish form /maus(z/. If 1 is reduced to 2 (where 2 (boks | mat(| kis |...) then the new structure, PLURAL((2)(z), will not overgeneralize in this way. The adult form /mais/ may be built up independently and then at some stage, presumably, it would be incorporated in a PAR element like PLURAL((2)(z | mais.. .). If the incorpora​tion of /mais/ in the new structure coincides with or overlaps with the reduction of 1 to 2, then one might speak of /maus(z/ being ‘driven out’ by /mais/. Whether the formation of new structures precedes, follows or coincides with the destruction of their erroneous counterparts are matters for future investigation.

The attraction of this kind of mechanism for eliminating overgeneralizations is that, it offers an answer to our problems of removing some generalizations but leaving others permanently in the grammar. If the C element (m)X(t)Y (where m (A | B and t (P | Q | R) is identified by the three strings AXPY, BXPY and AXQY, and if the string BXQY fails to occur in the text, then t will be reduced to P | Q as before and BXQY will remain as a permanent generalization, because the three strings contain all of A, B, P and Q in the context of the C element. Whether or not permanent generalizations like this are correct, or in what sense they can be said to be correct, are questions without clear answers at present and will be discussed later.

The foregoing account of SNPR is intended as a bird’s-eye view of the program and some of its rationale. We are now in a position to give a more detailed description of the program, sufficiently precise for it to be recreated, and to expand on certain points given only a mention so far.

Detailed description of SNPR14

As we have seen, the format of SNPR14 is similar to MK10. Starting with the basic set of minimal or M elements in its grammar, the program scans its sample of text repeatedly (or uses new text on successive scans) and, on each scan, it parses the text in accordance with its current grammar, keeping a count of all contiguous pairs of elements. A list structure is used to record these frequencies rather than a simple array, which would

LANGUAGE ACQUISITION, DATA COMPRESSION AND GENERALIZATION
71

be wasteful of storage space. The program also records the frequencies of occurrence of individual elements, both those identified at the top level and those accessed at lower levels. At the end of each scan the program selects the most frequently occurring pair (or chooses arbitrarily between ties) and adds that pair to its grammar as a new element.

The constituents of the new element are not merely a conjunction of the reference numbers of the two elements being joined, but are a concatenation of the constituents of these elements. Joining of ABC and PQR (reference numbers x and y) would give ABCPQR and not (x)(y). Prior to this building operation at the end of each scan are two other operations, ‘rebuilding’ and ‘folding’, in that order. They will be described in reverse order together with the parsing routine which analyses the text on each scan.

Folding. This process is essentially the same as the set of operations in GRAM15, although the detailed programming is rather different. The folding process uses a list of ‘contexts’ and a list of ‘connections’ which are updated every time a SYN element is formed or modified by rebuilding, folding or building. Maintenance of these lists will be described first.

Whenever a SYN or M element matches part of another SYN element, a context can be created by replacing the matched part by a * or other symbol to show the position of the missing part. For example, if a grammar contains, amongst others, the elements A, B, C, AB, BC and ABC, then five contexts may be derived from ABC: *BC, A*C, AB*, *C and A*. Every newly created or modified SYN element is matched with every other SYN or M element in this way. Each of the derived contexts is then added to the master list of contexts and assigned a reference number, unless it is already present on the list, in which case the reference number of the pre-existing entry is used for identification. The connections list has three-item entries for the reference numbers of the containing element (B-EL), the contained element (L-EL) and context (CXTREF). Entries with the same CXTREF are grouped together to facilitate later comparison processes.

The folding routine itself first examines the connections list systematically to find those two elements which occur most frequently in one or more shared contexts. The frequency of occurrence of a pair of elements in any one context is the sum of the current frequencies of occurrence of the corresponding B-ELs. The pair of elements with the highest contextual frequency is formed into a PAR element and added to the grammar with an assigned reference number. Then all the SYN elements in the grammar from which the shared contexts were derived are modified so that the contained element is replaced by the pointer or reference number for the new PAR element. For example, if the new PAR element (with a reference number, x) were AB | XY then SYN elements ABC and XYC would each become (x)C. In addition, all other SYN elements which contain one or other of the two PAR element constituents are modified in the same way, so that the contained element is replaced by a pointer to the new PAR element. This extension of the range of application of the PAR element is the second of the two ways in which the program generalizes, to be discussed later.

Since there are now duplicated C elements in the grammar, one of each identical pair is deleted, and its storage location is put back on the stack which supplies storage locations for newly created elements. All pointers to the deleted element are replaced by pointers to its matching partner and the current frequency value of the deleted element is added to the frequency of the partner. Appropriate adjustments are made in the connections list,

72
J. GERARD WOLFF
so that outdated entries are removed and new entries derived from the new C element or elements are added, including one or more entries showing the new PAR element as L-EL. On the subject of duplicates, it is actually necessary to check for duplication whenever any SYN or PAR element is created or modified at any stage of analysis. Whenever a newly created or modified element is found to duplicate a pre-existing element then the recent element is retained and the older one is deleted. Adjustments to pointers are made in the way indicated.

When these operations have been completed, the whole folding cycle is iterated on the modified and reduced grammar exactly as described, until all PAR elements with a frequency greater than zero have been found. It is quite possible for one or both elements which form a new PAR element to be PAR elements themselves. When this happens their constituents are written out in the new PAR element, as was the case with the conjoining of SYN elements.

Parsing. The parsing process in SNPR14 is a fairly straightforward ‘top-down’ analysis which works in the following way. At every point in the text where an element is to be identified, the program checks elements in the grammar against symbols in the text to the right of the given point until a match is found between an element and symbols in the text. Elements are listed in the grammar and checked against the text in descending order of recency. Whenever a new element is created by building, folding or rebuilding it is put at the top of the list. Whenever the composition of an existing element is changed by folding but not by rebuilding, it is moved to the top of the list. Generally speaking, this means that larger elements are checked before the smaller elements which are contained within them, so that the program will usually find the largest possible element in the grammar which will match symbols to the right of the given point in the text, in accordance with the maximum-size principle discussed in the previous section.

Checking of any given SYN or PAR element against the text means that those con​stituents of the element which are M elements are matched with the appropriate symbol in the text directly. Other constituents are ‘unpacked’ down to the level of M elements which can then be checked against symbols in the text. If a constituent of a PAR element at any level fails to match the text then the system ‘backs-up’ to try the other constituents in turn. The PAR element is considered not to match the text if none of its constituents match the text. A ‘parsing list’ (P-DN) is maintained to keep track of constituents at all levels within the element which is being checked and to record which of the constituents are successfully identified in the text. When an element has been successfully matched with a segment of text, P-DN contains a record of the internal structure of that segment as determined by the parsing process. The program can output this information for every segment, so that the complete structure assigned to the text by the parsing routine on any scan can be seen. The structural information in P-DN is also used by the rebuilding routine described below.

The parsing routines in MK10 and in earlier versions on SNPR are mixed bottom-up/top-​down processes which capitalize on frequency information to speed up processing. The mixed process was eventually abandoned in SNPR in favour of the current top-down system based on recency, because it proved too difficult and cumbersome to implement. But a process of this type is probably more plausible psychologically than a simple top-down process, and the use of frequency information suggests explanations for the

LANGUAGE ACQUISITION, DATA COMPRESSION AND GENERALIZATION
73

well-known effects of frequency in perception. There are interesting questions concerning the relation of frequency and recency and their psychological relevance, but these are beyond the scope of this article.

Rebuilding. In earlier versions of SNPR the PAR elements contained within any given C element were monitored only when that C element had first been formed. (At that stage in the program’s development PAR elements could not be identified except as constituents of C elements.) The assumption was that a C element, once rebuilt, would need no further attention, but this assumption proved false. Experience of running these early versions showed that the creation of new elements could change the parsing behaviour of other elements, which might then require rebuilding. It was therefore necessary to monitor elements at all stages of grammar development. In every scan, SNPR14 monitors all PAR elements identified as constituents of C elements, but not those identified at the top level as discrete elements. Less frequent monitoring of elements may be adequate, but this possibility has not been explored. A data structure is used for monitoring, which allows a record to be kept of the position of those PAR elements within their containing C elements.

At the end of the scan a rebuilding routine examines each of these records and, where necessary, rebuilds elements in the way which was previously described. The one or more incomplete PAR elements contained within a C element may occur at any level within that element. It may, in consequence, be necessary to rebuild C elements below the top level in addition to the given C element and its incomplete constituent PAR element or elements. A C element rebuilt at the top level retains its reference number, but any other rebuilt element is given a new reference number.

If, in the course of rebuilding, a PAR element is reduced to one constituent, then it loses its status as a PAR element and converts to the SYN element to which it has been reduced. The constituents of this SYN element are ‘written out’ in the containing C elements. For example, a PAR element, x, with the structure PQ | RS contained in the C element A(x)B, may be reduced to PQ. In this case, A(x)B becomes APQB.

It should be stressed again that the replacement of an element by its rebuilt counterpart occurs only in the context which led to the rebuilding. However, an element identified and rebuilt at the top level may also be a constituent of one or more other elements in the grammar. The effect of rebuilding may therefore be to alter the structure of those other elements so that the variety of terminal strings which they can generate would be reduced. This is a theoretical possibility which has not yet been encountered in practice. It is anticipated that any errors created in this way would be corrected automatically by later processing.

Realization of general principles

The detailed description of SNPR14 is complete and we may relate the program to the general principles set out in the previous two sections. As in MK10 and GRAM15, SNPR14 constructs SYN and PAR elements on the maximum frequency principle and, for a given frequency, each element is built as large as possible. The parsing system is designed to seek large elements in preference to smaller ones so that the average size of segments assigned to the text approaches a maximum. SNPR14 and MK10 share this feature but differ in how they achieve it.

Generalizations arise from two sources: (1) When new elements are created by building,

74
J. GERARD WOLFF

one or both of the two concatenated elements may be C or PAR elements. (2) PAR elements created during folding may be incorporated in contexts other than those from which they were derived.

This second mechanism has the potential for forming recursive structures without ad hoc provision, because any element in which a PAR element is incorporated may itself be a constituent of that PAR element, either immediately or at depth. Consider, for example, a grammar containing the elements A, B, C, BB, ABC, and ABBC amongst others. A PAR element (x) with the structure B | BB may be formed and then ABC and ABBC will each become A(x)C (and one of them will be deleted). BB will become (x)(x), so that the structure of x will therefore be B | (x)(x), which is recursive. Such strings as ABBBC, etc. would then fall within the generative range of the grammar. The example of recursion given earlier would be handled in a similar way.

The recursive generalization in the example above looks plausible if we take B to represent the word very and consider how a child’s hearing very and very very in the same context may lead him or her to the adult intuition that the word may be repeated any number of times. Adults retain this intuition, although they never hear all its possible realizations. Likewise, the generalization in the earlier example is consistent with native speakers’ intuitions about the structure of English. The system does from time to time produce erroneous recursive generalizations which are then corrected by rebuilding.

The rebuilding mechanism relates to our general principles in the following way. Its function is to reduce the range of terminal strings which can be generated by C and PAR elements and thus to reduce the generative range of the grammar of which they are a part. This reduction is made in such a way that the range of strings in the sample text which can be encoded by the grammar remains unchanged. Generative range is, as we saw before, inversely related to CC, so the effect of the rebuilding mechanism should be to increase the CC of a grammar.

The creation of new PAR elements means that this increase in CC may be offset by an increase in Sg. However, some of the new elements may be identical with existing elements and in that case there will be no increase in Sg. Even when a new element is not identical with an existing element, the increase in Sg may be minimized by the encoding techniques discussed previously. It seems, in short, that the rebuilding mechanism may increase CC without a completely offsetting increase in Sg, so that CVg[Sg] is increased. Taken as a whole, program SNPR14 can be viewed as an embodiment of three interwoven processes designed to maximize CVg[Sg]. The building process increases CC and Sg in such a way that the increase in CC for the unit increase in Sg is maximized while folding decreases Sg without, apparently, producing a completely offsetting decrease in CC. Rebuilding increases CC with some cost in increased Sg but, seemingly, there is an overall gain in CVg[Sg]. Quantified tests of these suppositions have not yet been attempted.

As noted earlier in connection with MK10, it appears that gains in CC for unit increase in Sg are likely to be greatest in the early stages and decrease progressively thereafter. Additions to a grammar should become progressively less ‘profitable’ in terms of increases in CC and this may explain why the pace of language development is apparently greatest in the early years and decreases throughout childhood and beyond.

Illustrative results
When program SNPR14 is run on a sample of Text 5 it produces a grammar which is nearly equivalent to the original grammar, but with anomalies which will be explained.

LANGUAGE ACQUISITION, DATA COMPRESSION AND GENERALIZATION
75

The program has also been run on another text (Text 6) which has the same grammar as Text 5, but without any instances of JOHNLOVESMARY or WEWALKFAST. The sequence of elements derived from this text by the program is shown Table 1. These results exhibit the same kinds of features as those from Text 5, including the anomalies, and they will also serve to illustrate how the program can correctly induce missing sentences. Because of the weaknesses in this version of SNPR no attempt has yet been made to run it on natural language texts.

Table I. Elements derived from a 2500 letter sample of Text 6 in order of their creation or modification by

program SNPR14

Columnsa

1
2
3
4
5

1.
28
98
S
B
LO

2.
29
67
S
B
SU

3.
30
66
S
B
SUS

4.
31
66
S
B
SUSA

5.
32
62
S
B
SUSAN

6.
33
62
S
B
AT

7.
34
62
S
B
ATE

8.
35
62
S
B
ATED

9.
36
62
S
B
HATED

10.
37
60
S
B
AV

11.
38
60
S
B
AVI

12.
39
60
S
B
AVID

13.
40
60
S
B
DAVID

14.
41
58
S
B
UN

15.
42
124
P
F
U | (31) [U | SUSA]

16.
41
58
C
F
(42)N

17.
32
124
C
F
(42)N

18.
41
58
C
B
R(42)N [R,41]

19.
41
58
S
R
RUN

20.
32
66
S
R
SUSAN

21.
43
51
S
B
LOW [28,W]

22.
44
51
S
B
LOWL

23.
45
51
S
B
LOWLY

24.
46
51
S
B
SLOWLY

25.
47
49
S
B
OH

26.
48
49
S
B
OHN

27.
49
115
P
F
(31) | (47) [SUSA | OH]

28.
32
66
C
F
(49)N

29.
48
115
C
F
(49)N

30.
32
49
C
B
J(49)N [J,48]

31.
32
49
S
R
JOHN

76
J. GERARD WOLFF

Table 1—continued

Columnsa

1
2
3
4
5

32.
46
66
 S
 R
SUSAN

33.
50
47
 S
 B
LOV [28,V]

34.
51
47
S
 B
LOVE

35.
52
47
 S
 B
LOVES

36.
53
44
 C
 B
O(42)

37.
53
44
 S
R
OU

38.
54
44
 S
 B
YOU

39.
55
43
 S
 B
WE

40.
56
42
 S
 B
AR

41.
57
42
 S
 B
ARY

42.
58
42
 S
 B
MARY

43.
59
36
 S
 B
AS

44.
60
83
P
 F
A | (51) [A | LOVE]

45.
59
36
C
 F
 (60)S

46.
52
83
C
 F
 (60)S

47.
36
62
C
 F
H(60)TED

48.
40
60
C
 F
D(60)VID

49.
48
66
C
 F
SUS(60)N

50.
56
42
C
 F
M(60)RY

51.
59
36
C
 B
(60)ST [59,T]

52.
59
36
S
 R
AST

53.
56
42
S
 R
MARY

54.
46
66
S
 R
SUSAN

55.
40
60
S
 R
DAVID

56.
36
62
S
 R
HATED

57.
52
47
S
 R
LOVES

58.
61
90
P
. F
W | (50) [W | LOV]

59.
55
43
C
 F
(61)E

60.
51
90
C
 F
(61)E

61.
46
51
C
 F
SLO(61)LY

62.
52
47
C
 F
(61)ES

63.
55
36
S
 B
FAST [F,59]

64.
52
47
S
 R
LOVES

65.
46
51
S
 R
SLOWLY

66.
51
43
S
R
WE

LANGUAGE ACQUISITION, DATA COMPRESSION AND GENERALIZATION
77

Table 1—continued

Columnsa

1
2
3
4
5

67.
 62
35
 S
B
LOVESSUSAN [52,48]

68.
 63
35
S
B
RUNSSLOWLY [41,46]

69.
 64
33
S
B
DAVIDHATED [40,36]

70.
 65
29
C
B
(61)(60)

71.
 65
29
S
R
WA

72.
 66
72
P
F
A | E

73.
 58
42
C
F
M(66)RY

74.
 48
31
C
F
SUS(66)N

75.
 40
27
C
F
D(66)VID

76.
 36
29
C
F
H(66)TED

77.
 55
36
C
F
F(66)ST

78.
 52
12
C
F
LOV(66)S

79.
 65
29
C
F
W(66)

80.
 51
72
C
F
W(66)

81.
 62
35
C
F
L0VESSUS(66)N

82.
 64
33
C
F
D(66)VIDHATED

83.
 36
29
C
F
H(66)T(66)D

84.
 62
35
C
F
LOV(66)SSUS(66)N

85.
 64
33
C
F
D(66)VIDH(66)TED

86.
 64
33
C
F
D(66)VIDH(66)T(66)D

87.
 65
29
C
B
W(66)L [65,L]

88.
 65
29
S
R
WAL

89.
 64
33
S
R
DAVIDHATED

90.
 62
35
S
R
LOVESUSAN

91.
 36
29
S
R
HATED

92.
.51
43
S
R
WE

93.
 52
12
S
R
LOVES

94.
 55
36
S
R
FAST

95.
40
27
S
R
DAVID

96.
 48
31
S
R
SUSAN

97.
 58
42
S
R
MARY

98.
 67
29
S
B
WALK [65,K]

99.
 68
29
S
B
JOHNHATED [32,36]

100.
69
62
P
F
(32) | (40) [JOHN | DAVID]

78
J. GERARD WOLFF

Table 1—continued

Columnsa

1
2
3
4
5

101.
68
29
 C
F
(69)HATED

102.
64
62
 C
F
(69)HATED

103.
68
23
 S
B
RUNFAST [41,55]

104.
70
58
 P
F
(46) | (55) [SLOWLY | FAST]

105.
63
35
 C
F
RUN(70)

106.
68
58
C
F
RUN(70)

107.
63
35
 C
B
(69)LOVESSUSAN [69,62]

108.
71
97
P
F
(36) | (62) [HATED | LOVESSUSAN]

109.
64
62
C
F
(69)(71)

110.
63
97
C
F
(69)(71)

111.
64
33
C
B
WERUN(70) [51,68]

112.
72
31
 C
B
(69)(71)SUSAN [63,48]

113.
72
31
 C
R
(69)HATEDSUSAN

114.
73
30
 C
B
(69)(71)MARY [63,58]

115.
73
30
 C
R
(69)HATEDMARY

116.
63
35
 C
R
(69)LOVESSUSAN

117.
74
66
P
F
(36) | (52) [HATED | LOVES]

118.
62
35
C
F
(74)SUSAN

119.
72
31
C
F
(69)(74)SUSAN

120.
63
66
C
F
(69)(74)SUSAN

121.
73
30
C
F
(69)(74)MARY

122.
72
96
P
F
(48) | (58) [SUSAN | MARY]

123.
62
35
C
F
(74)(72)

124.
63
66
C
F
(69)(74)(72)

125.
73
96
C
F
(69)(74)(72)

126.
63
29
C
B
WALK(70) [67,70]

127.
75
54
P
F
(41) | (67) [RUN | WALK]

128.
68
25
C
F
(75)(70)

129.
63
54
C
F
(75)(70)

130.
64
33
C
F
WE(75)(70)

131.
68
68
C
B
(69)(74)(72)(69)(74)(72) [73,73]

132.
76
44
C
B
YOU(75)(70) [54,63]

133.
77
87
P
F
(51) | (54) [WE | YOU]

134.
64
43
C
F
(77)(75)(70)

135.
76
87
C
F
(77)(75)(70)

LANGUAGE ACQUISITION, DATA COMPRESSION AND GENERALIZATION
79

Table 1—continued

Columnsa

1
2
3
4

136.
64
16
C
B
(77)(75)(70)(69)(74)(72)(69)(74)(72) [64,68]

137.
78
31
C
B
(77)(75)(70)(77)(75)(70) [76,76]

138.
79
50
P
F
(68) | (76) [(69)(74)(72)(69)(74)(72) | (77)(75)(70)]

139.
64
21
C
F
(79)(69)(74)(72)(69)(74)(72)

140.
78
29
C
F
(77)(75)(70)(79)

141.
64
21
C
F
(79)(79)

142.
78
50
C
F
(79)(79)

143.
64
12
C
B
(69)(74)(72)(79)(79) [73,78]

The program was stopped here.

aCo1umns
1.
Reference numbers of elements. Elements 2 to 27 are the letters of the alphabet. Element 1 is a dummy element.

2.
Frequency of occurrence in text sample. The exact nature of this frequency value is explained in the text.

3.
Type of element (P=PAR; S=S; C=C).

4.
Mode of formation (R rebuilding; 3 = building; F = folding).

5. Immediate constituents of elements. The structures of the constituents of PAR elements are given in square brackets. The two elements which are concatenated to form built elements are shown in square brackets in cases where they are not entirely obvious.

Each built element (B in column 4) marks the end of a program cycle and it may be preceded by zero or more rebuilt elements (R), or elements created or modified by folding (F). For the first 14 scans, elements are formed only by building and then, on the fifteenth scan, a PAR element (42) is formed with the structure U | SUSA, derived from UN and SUSAN. The S elements 32 and 41 are converted to identical C elements (with the structure of (42)N), 41 is deleted and its frequency (58) is added to the frequency of 32 to give a total frequency of 124. On the same scan, a new element (shown in line 18) is formed by building. This element, with the structure R(42)N, is the first example of generalization by building. It can generate the string RUN and the erroneous string RSUSAN. This and other examples of overgeneralization appearing in these results do not much resemble mouses, buyed etc., probably because the structure of the artificial text is not sufficiently close to that of natural language. When the program has been developed enough for it to be run on natural language we may look for more realistic results.

Somewhat confusingly, the new element is given the reference number (41) of the previously deleted element. The new element is derived from element R and element 41 (old version) and pointers to these two elements are stored pending the building operation. When the old element 41 is modified and deleted, its stored pointer is replaced by a pointer to 32, so that the new element is in fact built from element R, joined to the modified element 32.

80
J. GERARD WOLFF

During the following scan the new element 41 serves to identify instances of RUN but not SUSAN; the latter is identified by element 32. The rebuilding process converts 41 to the structure RUN, while element 32 is restored to its original structure, SUSAN. In the cycles that follow there are several similar examples where erroneous PAR elements and C elements are created and then corrected by rebuilding. The first examples of (erroneous) generalization by folding appear on lines 47 to 50. They are corrected by rebuilding on the following cycle. Another point of interest is the way PAR elements may be identified as discrete elements at the top level and may be incorporated in built elements. An example appears on line 60.

The first correct PAR element to be formed is element 69 (with the structure JOHN | DAVID shown on line 100) which is derived from DAVIDHATED (line 89) and JOHNHATED (line 99). C element 64 is formed as (69)HATED and then (line 107) an element is built with the structure (69)LOVESSUSAN. This leads to the formation of PAR element 71 (line 108) and C element 63 (line 110), with the erroneous structures HATED | LOVESSUSAN and (69)(71) respectively. Element 63 is incorporated in elements 72 (line 112) and 73 (line 114), which are rebuilt (lines 113 and 115) together with element 63 itself (line 116). The rebuilt elements on lines 113 and 116 lead to the formation of PAR element 74 (line 117) with the correct structure HATED | LOVES. The formation of the elements on lines 120 and 121 leads directly to element 73 (line 125) with the structure (69)(73)(72) (where 69 (JOHN | DAVID; 74-(HATED | LOVES; 72 (SUSAN | MARY). This structure is identical with one of the two sentence types in the original grammar. Another structure is formed soon afterwards (element 76, line 135) which is equivalent to the second sentence type. It has the form (77)(75)(70) (where 77 (WE | YOU; 75 (RUN | WALK; 70 (SLOWLY | FAST).

Two structures have been formed which have a generative capacity identical with the generative capacity of the original grammar. They are formed despite the fact that the text did not contain the full range of terminal strings of the original grammar. It is clear that the rebuilding mechanism cannot remove the two predicted strings, JOHNLOVESMARY and WEWALKFAST, from the set of terminal strings of these two structures.

In Fig. 2 is shown part of the parsing assigned to the text on the scan immediately following the formation of element 76 (line 135). This parsing is nearly but not quite the same as the parsing which would be assigned by the original grammar. The differences are due to the presence in the grammar of two C elements: 68 (line 131) and 64 (line 136). The first is simply a concatenation of 73 with itself, and the second, which is formed in the same cycle as 76, is a similar conjunction of 64 (old version) with 68. At this stage the only elements identified in the text are elements 64 (new version), 76, 68 and 73, together with their constituents. These elements are nearly the same as the original grammar. All other elements, like elements 34 (line 7), 39 (line 12), 62 (line 123) and 63 (line 126), are ‘garbage’ which may be discarded. In later cycles the program continues to incorporate elements 73 and 76 in larger C and PAR elements. If it were allowed to run on, it would eventually create an element equivalent to the complete text sample.

Rather than the progressive amalgamation of elements into one ‘super’ element, it would perhaps be more appropriate for the program to recognize the recursion implicit in the original grammar. The form of the latter should perhaps be 1 (A1 | B1 | ((with A and B repres​enting the two sentence patterns), so that it expresses the repeated unpacking of the 1 symbol needed to create a text containing more than one sentence. If elements 64, 76, 68 and 73

LANGUAGE ACQUISITION, DATA COMPRESSION AND GENERALIZATION
81

belonged to the same PAR element (reference number x) then, in the way explained in the last section, SNPR14 would reduce that element to the form (73) | (76) | (x)(x), which is suitably recursive. Such an element would have a generative capacity equivalent to the original grammar. These considerations suggest that elements identified at the top level should perhaps be treated as if they belonged to one PAR element. A rationalization of this position would be that such elements can be regarded as having a shared context if they are regarded as having a null context.

68(69[40(DAVID)]74[52(LOVES)]72[48(SUSAN)]

69[40(DAVID)]74[36(HATED)]72[58(MARY)])

68(69[40(DAVID)]74[36(HATED)]72[48(SUSAN)]

69[40(DAVID)]74[36(HATED)]72[58(MARY)])64(77[54(YOU)]

75[67(WALK)]70[55(FAST)]69[40(DAVID)]74[36(HATED)]

72[48(SUSAN)]69[32(JOHN)]74[36(HATED)]72[48(SUSAN)])

76(77[54(YOU)]75[41(RUN)]70[46(SLOWLY)])

76(77[54(YOU)]75[67(WALK)]70[55(FAST)])

64(77[51(WE)]75[41(RUN)]70[46(SLOWLY)]69[40(DAVID)]

74[36(HATED)]72[58(MARY)]69[32(JOHN)]74[36(HATED)]

72[58(MARY)]) …

Fig. 2. Part of the parsing assigned by SNPR14 to Text 6 on the scan following the formation of element 64 (line 136 in Table 1). Square brackets are used to mark PAR elements and round brackets show the boundaries of SYN elements.

While program SNPR14 operates more or less successfully on Texts 5 and 6, it has been less successful in retrieving the grammar used to produce the input text in other cases, like Text 3 which is a hierarchical grammar, and Text 7 which is recursive. Failure in these cases seems to be due to a general weakness in the program and not to the hierarchy and recursion features per se. (The program can and frequently does create ‘wrong’ grammars (see below) with hierarchical and recursive structures.) For reasons that are not yet fully understood, SNPR14 sometimes fails to form key constituents as independent entities. With Text 3 it builds elements containing the letter sequence JOHN without at any stage forming a discrete element with the structure JOHN. It is therefore impossible to form the target PAR element which contains this word. With Text 7 it forms elements with the structures (64)VERY(55) and (64)VERYVERYVERY(55) (where 64 (A | THE and 55 (FAST | SLOW, which should lead to the identification of a recursive PAR element (x) with the structure VERY | (x)(x)(x). This does not happen because VERYVERYVERY does not exist as an element in its own right.

82
J. GERARD WOLFF

Discussion

Program SNPR14 is a partial model of first language acquisition which seems to offer some insight into how children may discover segmental and disjunctive groupings in language, how they may identify recursive structures, and how they may generalize beyond the language which they hear, correcting any overgeneralizations which occur. The program comes close to meeting the criteria of success which were set.

The first of these criteria, the requirement that the program should be able to retrieve the grammar used in the creation of an input text, deserves some comment because it begs a question concerning the ‘correctness’ of that grammar with respect to the sample text and the ‘correctness’ of the generalizations required to achieve the target grammar. Since there is an infinite range of grammars which are consistent with any text, we may ask why one or some of them should be judged more appropriate than the rest. The answer suggested here is that our intuitions are based on principles of cognitive economy like those which have been presented. These principles echo linguists’ concern with simplicity and may, indeed, from the standpoint of linguistic theory, represent a refinement of that traditional but somewhat vague notion. (They may also prove helpful in understanding the nature of parsimony in scientific theorising.) These considerations suggest a reformulation of the language acquisition problem: notwithstanding the first criterion of success which was established for SNPR, we should, perhaps, cease to look on language acquisition as a process of discovering a target grammar and should, instead, view it as a process of constructing an optimally efficient cognitive system. This revised view fits more naturally into a biological perspective and allows us to sidestep certain logical problems which arise from the first view (Gold 1967, Pinker 1979). Gold proved that for certain classes of language (which probably include natural languages) it is impossible to identify the grammar of a language from a ‘positive’ sample of the language alone without ‘negative’ samples which are marked as wrong, or error correction by an informant, or constraints on the order in which linguistic material is presented. If there is no target grammar but merely an evolutionary process of improving the efficiency of a cognitive system then this proof no longer presents a problem.5 The taxonomy of grammars used in discussions such as Gold’s should perhaps be replaced by a new taxonomy based on what devices have been used in the optimization process and how effective they are. Those used in SNPR have been described in this article, but their full evaluation will require further work.

An important feature of the theory is the mechanism for eliminating overgeneralizations. There seem to be only two other proposed mechanisms which are intended to work without error correction by an informant, but both of them have weaknesses which seem to be more serious than anything so far discovered in the current proposal. Braine (1971) describes a mechanism which would, apparently, eliminate generalizations of all kinds, both those which are correct and those which are not. Coulon and Kayser (1978) suggest that a measure of discrepancy or distance between the generative potential of a grammar and the language sample from which it is derived could serve to keep generaliza​tions within bounds. The evidence which they present suggests that this principle cannot reliably distinguish between correct and incorrect generalizations.

To the extent that it meets its target criteria, program SNPRI4 can be regarded as empirically valid. But it is still pertinent to ask whether there are any predictions or implications of the model which may be compared with known features of language

LANGUAGE ACQUISITION, DATA COMPRESSION AND GENERALIZATION
83

acquisition. Some points of validation have been noted at intervals throughout this article and some others will be considered here. It should be borne in mind, however, that the model is not intended as a fully developed account of language acquisition and that future extensions and modifications, as for example, the incorporation of processes for abstracting non-linguistic structures, are likely to change the detailed patterning of its behaviour.

An examination of Table 1 shows that there are no errors in segmentation. The formation of whole segments is preceded by the formation of their parts, but there is no case in which part of one segment is joined to part or all of another one. A prediction of the model, therefore, is that segmentation errors in children should be rare. Casual observation of young children’s speech shows that their words are frequently incomplete, but it does seem that segmentation errors of the type described are indeed rare. ‘The evidence we found in the fine structure of our data suggests that segmentation is a real problem in the sense that it is something a child learns but that it is also a problem for which he has highly effective solution procedures’ (Brown, Cazden and Bellugi-Klima 1969, P. 48).

One of the strongest implications of the model and of the general principles on which it is based is that syntagmatic patterns should be acquired in descending order of frequency. The same is true of program MK10 (Wolff 1977). The proposition requires qualification in three ways. (1) The patterns referred to are those which are functional in the mature grammar and they exclude others formed as by-products of the acquisition process. (2) Slight perturbations or anomalies sometimes occur for reasons which need not be detailed here. (3) Last, but most important, the proposition applies only to patterns of a given type. Syntagmatic patterns without disjunctive components (S elements in the model) should be distinguished from those which contain disjunctive relations (C elements). The first appearances of words in Table 1 are in strict order of frequency and the more frequent of the two sentence patterns is identified before the less frequent ones. But sentence patterns are isolated later than words, despite their being relatively more frequent. A second general prediction of the theory, then, seems to be that the appearances of disjunctive structures will tend to be delayed compared with non-disjunctive patterns. Complex structures, being syntagmatic patterns which contain disjunctive relations, will also tend to be delayed compared with simple patterns. The reason for this is that a certain range of simple patterns needs to exist before disjunctive relations can be detected. In Table 1 the target PAR element JOHN | DAVID and the corresponding C element cannot be created until DAVIDHATED and JOHNHATED have been built up (see lines 69, 99 and 100). The prediction apparently provides an explanation for certain phenomena which will be considered shortly.

If, as seems to be the case (see below), the complexity of complex structures is inversely related to their frequencies, then the model predicts that such structures should be acquired in approximate order of increasing complexity. It would account for Brown’s (1973) Law of Cumulative Complexity which states that the components of a structure are created before the structure itself. Notice that the prediction does not arise from the way the building routine forms new elements by joining simpler constituents. In spite of this feature, the model could in principle create the sub-structure of a C element after the main framework of the element has been established.

Brown and Hanlon (1970) have shown that the order of acquisition of sentence patterns correlates with frequency and also, to essentially the same extent, with grammatical

84
J. GERARD WOLFF

complexity. Their tentative opinion favours grammatical complexity as a determiner of acquisition order, but they acknowledge that their data provide much the same support for frequency as a controlling variable. Word length is inversely related to frequency and there is a greater variety of rare words than common ones (Zipf 1935). So a prediction from SNPR (and from MK10) is that word length should be an increasing, negatively accelerated function of age of acquisition. Confirming evidence has been presented previously (Wolff 1977). Significant inverse correlations have been found between word frequencies and age of acquisition (Gilhooly and Gilhooly 1979).

However, Brown (1973) has presented evidence to show that the three children of his study gained control over fourteen morphemes in an order which bears little relation to the frequency with which these morphemes are used by the children’s parents. This is the chief support for his conclusion that frequency is not relevant to language acquisition. Other evidence in the same vein is the longstanding observation that English function words tend to appear late in children’s spoken vocabularies despite their relatively high frequencies of occurrence (McCarthy 1954).

These observations are seemingly in conflict with the predictions which have been put forward, but need not be fatal for the model. Most available evidence on the order of acquisition of language patterns is based on what children actually say. This may not be the same as what, in some sense, they know (Smith 1973). Since many function words and most of Brown’s fourteen morphemes have little communicative value when they are divorced from the grammatical structures in which they normally occur, it is reasonable to suppose that, while children may have some kind of knowledge of these small function elements (their sound patterns perhaps), they will not use them until they have acquired the larger structures which contain them. If acquisition is actually defined in terms of correct use in obligatory contexts, as is the case with Brown’s fourteen morphemes, then it is clear that no morpheme can be ‘acquired’ in this sense until its containing structures have matured. The relatively late appearance of function words may thus be explained by the relatively late appearance of complex structures predicted by SNPR14. We should expect the order of acquisition of Brown’s fourteen morphemes to be related to the frequencies of the structures in which the morphemes occur, rather than the frequencies of the morphemes themselves. The prediction finds support in Brown’s conclusion that the order of acquisition of these morphemes is related to the semantic/syntactic complexity of their containing structures, coupled with the observation by Brown and Hanlon that syntactic complexity correlates with frequency.

It is possible, of course, that the frequencies of the containing structures are themselves correlated with the frequencies of the functional elements contained within them. Should this be so then Brown’s observation would still present a problem. However this obser​vation may, after all, turn out to be wrong. Recent reanalyses of Brown’s data show significant correlations between the frequency and the order of acquisition of certain morphemes (Forner 1979, Moerk 1980).

Be that as it may, the late appearance of function words in children’s spoken vocabularies still requires an explanation like that outlined above. At a stage when a child’s mental ‘grammar’ contains only function words and content words, without any larger syntactic structures to tie them together and make the function words meaningful, one would expect a child to communicate using content words alone, because they are meaningful even when there is no syntactic structure. Strings of content words without

LANGUAGE ACQUISITION, DATA COMPRESSION AND GENERALIZATION
85

function words are observed in children’s speech and are known, of course, as ‘telegraphic speech’.

The fact that children do apparently observe correct word order in their telegraphic speech (Brown 1973) runs counter to the view of telegraphic speech being suggested here. The contradiction may perhaps be resolved by the previously noted observation that the model can in principle form sub-structures after the larger structures which contain them.6
Another feature of children’s language development which may be explained by the model is the observation that children often produce irregular forms correctly before they regularize them by erroneous overgeneralization: ‘. . . children actually say it came off, it broke, and he did it before they say it camed off, it breaked and he doed it. Even though the correct forms may have been practiced for several months, they are driven out of the child’s speech by overregularization, and may not return for years. This is just one example of a widespread phenomenon, noted by investigators of child speech in many languages...’ (Slobin 1971, p. 9). This observation seems to be in keeping with a process like SNPR14 because regularization requires the formation of a complex structure like (V)ed (where the category V contains came, broke and do as well as help, walk, etc.) and, as we have seen, the formation of complex (and disjunctive) structures by the program tends to be delayed relative to simple forms.

This delay in the appearance of disjunctive relations also suggests an explanation of the ‘syntagmatic-paradigmatic (S-P) shift’: the observation that young children tend to give responses in a word association task which are syntagmatically related to the stimulus words, while older children and adults tend to give paradigmatically related responses. It is not hard to imagine how the progressive introduction of paradigmatic groupings into a child’s linguistic system could influence word association responses in this way. Kiss (1973) has discussed ideas of this kind.

Since structure-abstraction processes like those we have been considering probably apply in both semantic and syntactic domains, we might expect the S-P shift to have a semantic as well as a syntactic dimension. Petrey’s (1977) thesis that the S-P shift is better characterized as an episodic-semantic shift gives useful emphasis to semantics, although the case may have been overstated.

A seeming problem in using the S-P shift as supporting evidence for SNPR is that ‘Whereas normal children are speaking correctly, and thus displaying great sensitivity to form-class distinction, by the age of four, the S-P shift is most dramatic between the ages of six and eight’ (Petrey 1977, p. 61). In answer to this it may be said that correct speech is not good evidence that young children are sensitive to form-class distinctions—they may merely have a good stock of correct phrases and sentences. It is also possible that semantic constraints may help them choose words correctly (Braine 1976). Performance is not a simple guide to competence, especially in children.

Concluding remarks

In this discussion and at other points in the article an attempt has been made to show how SNPR14 and its underlying principles relate to observed features of language develop​ment and other phenomena. There seem to be sufficient points of contact for the model to serve as a basis for further development into a more adequate theory of language acquisition.

86
J. GERARD WOLFF

An immediate goal is to remedy the faults which have prevented this model from fully meeting its target criteria. Sometimes the program fails to form one or more constituents of a grammar, as it did with Texts 3 and 7. The program needs to be able to detect null elements, and it should perhaps also be modified so that it treats elements identified at the top level as if they shared a null context. If these problems can be solved then it may be possible to get meaningful results with natural language texts, so that comparisons between the program and children can be made in more detail.

In the longer term it is possible that the ideas developed here may be applied to the abstraction of non-linguistic cognitive structures. There seem to be parallel problems of segmentation, classification etc. which may be solved in similar ways (see Wolff 1976 and Wolff, in preparation, a). At some stage an attempt may be made to create a unified system which would abstract an integrated structure of linguistic and non-linguistic (syntactic and semantic) cognitions.

Acknowledgements—I am grateful to Alan Wilkes, Alan Kennedy and Philip Quinlan of the University of Dundee and to anonymous reviewers for constructive comments on earlier drafts of this paper.

NOTES

1 Papers outlining the main ideas in this article have been presented at the London Conference of the British Psychological Society in December 1979, and at the AISB-80 conference on Artificial Intelligence in Amsterdam in July 1980 (Wolff 1980a).

2 Gazdar (forthcoming) argues that a version of PSG is as good as other systems like transformational grammar for handling the complexities of natural language. In another paper (in preparation, a) I have adapted these ideas and those of Woods (1970) and Winograd (1972) to show how optimization principles discussed in this article may apply to ‘transformational’ and ‘semantic’ linguistic structures.

3 In this article the terms linguistic and non-linguistic will be used to distinguish phonetic, phonological and syntactic knowledge of language substance from semantic and general world knowledge. There is no presumption that the boundaries between these domains are sharply defined.

4 Harris’s use of the term ‘folding’ in this connection is different from how the term is used later in this article.

5
The assumption that there is a target grammar seems to be what led Pinker to write that’... equipping a child with Occam’s Razor will not help him learn languages’ (p. 231).

6 These matters are more fully discussed in another paper in preparation (b).

REFERENCES

ANDERSON, J. R. 1977 Induction of augmented transition networks. Cognitive Science 1, 125-157.

ATTNEAVE, F. 1954 Some informational aspects of visual perception. Psychological Review 61, 183-193.

ATTNEAVE, F. 1959 Application of Information Theory to Psychology. Holt, New York.

BARLOW, H. B. 1969 Trigger features, adaptation and economy of impulses. In K. N. Leibovic (Ed.), Information Processing in the Nervous System, pp.209-230. Springer, New York.

BIERMANN, A. W. and FELDMAN, J. A. 1972 A survey of results in grammatical inference. In M. S. Watanabe (Ed.), Frontiers of Pattern Recognition, pp. 31-54. Academic Press, New York.

BRAINE, M. D. S. 1963 The ontogeny of English phrase structure: the first phrase. Language 39, 1-13.

BRAINE, M. D. S. 1971 On two types of models of the internalization of grammars. In D. I. Slobin (Ed.), The Ontogenesis of Grammar. Academic Press, New York.

BRAINE, M.D. S. 1976 Children’s First Word Combinations. University of Chicago Press, Chicago.

BROWN, C. 1954 My Left Foot. Secker & Warburg, London.

LANGUAGE ACQUISITION, DATA COMPRESSION AND GENERALIZATION
87

BROWN, R. 1973 A First Language: The Early Stages. Penguin, Harmondsworth.

BROWN, R., CAZDEN, C. and BELLUGI-KLIMA, U. 1969 The child’s grammar from I to III. In J. P. Hill (Ed.), Minnesota Symposia on Child Psychology, Vol. 2. University of Minnesota Press, Minneapolis.

BROWN, R. and HANLON, C. 1970 Derivational complexity and order of acquisition in child speech. In J. R. Hayes (Ed.), Cognition and the Development of Language, pp. 155-207, Wiley, New York.

CHOMSKY, N. 1957 Syntactic Structures. Mouton, The Hague.

CHOMSKY, N. 1959 Review of Skinner’s “Verbal Behaviour”. Language 35, 26-58.

CHOMSKY, N. 1965 Aspects of the Theory of Syntax. M.I.T. Press, Cambridge, Mass.

COLLET, R. J. and WOLFF, J. G. 1977 From phoneme to morpheme—revisited. Bulletin of the Association for Literary and Linguistic Computing 5, 23-25.
CONRAD, C. 1972 Cognitive economy in semantic memory. Journal of Experimental Psychology 92, 149-154.
COOK, C. M. and ROSENFELD, A. 1976 Some experiments in grammatical inference. In J. C. Simon (Ed.), Computer Oriented Learning Processes, pp. 157-174. NoordhofF, Leyden.

COULON, D. and KAYSER, D. 1978 Learning criterion and inductive behaviour. Pattern Recognition 10, 19-25.

ERVIN, S. M. 1964 Imitation and structural change in children’s language. In E. H. Lenneberg (Ed.), New Directions in the Study of Language. M.I.T. Press, Cambridge, Mass.

FELDMAN, J. 1972 Some decidability results on grammatical inference and complexity. Information and Control 20, 244-262.

FORNER, M. 1979 The mother as LAD: interaction between order and frequency of parental input and child production. In F. R. Eckman and A. J. Hastings (Eds), Studies in First and Second Language Acquisition. Newberry House, Rowley, Mass.

FRIES, C. C. 1952 The Structure of English. Longmans, London.

FROMKIN, V. (Ed.), Speech Errors as Linguistic Evidence. Mouton, The Hague.

FU, K. S. and BOOTH, T. L. 1975 Grammatical inference: introduction and survey I and 2. IEEE Transactions on Systems, Man and Cybernetics. SMC5 (1), 95-111; SMC5 (4), 409-423.

GAMMON, E. 1969 Quantitative approximations to the word. Tijdschrift van het Instituut voor Toegepaste Linguistiek, Leuven 5, 43-61.

GAZDAR, G. forthcoming. Phrase structure grammar. To appear in G. K. Pullum and P. Jacobson (Eds), The Nature of Syntactic Representation.

GILHOOLY, K. J. and GILHOOLY, M. L. 1979 The age of acquisition of words as a factor in verbal tasks. Final report to the S.S.R.C. on research grant HR/5318.

GOLD, M. 1967 Language identification in the limit. Information and Control 10, 447-474.

HAMBURGER, H. and WEXLER, K. 1975 A mathematical theory of learning transformational grammar. Journal of Mathematical Psychology 12, 137-177.

HARRIS, L. R. 1977 A system for primitive natural language acquisition. International Journal of Man-machine Studies 9, 153-206.

HARRIS, Z. S. 1970 Papers in Structural and Transformational Linguistics. Reidel, Dordrecht.

HAYES, J. R. and CLARK, H. H. 1970 Experiments on the segmentation of an artificial speech analogue. In J. Hayes (Ed.), Cognition and the Development of Language, pp. 221-234. Wiley, New York.

HORNING, J. J. 1969 A study of grammatical inference. Technical Report No. CS 139. Computer Science Dept., Stanford University, Stanford.

JOHNSON, N. F. 1965 The psychological reality of phrase-structure rules. Journal of Verbal Learning and Verbal Behaviour 4, 469-475.

KANG, A. N. C., LEE, R. C. T., CHANG, C.-L. and CHANG, S.-K. 1977 Storage reduction through minimal spanning trees and spanning forests. IEEE Transactions on Computers C-26 (5), 425-434.

KELLEY, K. L. 1967 Early syntactic acquisition. Rand Corporation Report P-37 19.

KISS, G. R. 1973 Grammatical word classes: a learning process and its simulation. Psychology of Learning and Motivation 7, 1-41.

KLEIN, S. and KUPPIN, M. 1970 An interactive, heuristic program for learning transformational grammar. Technical Report No. 97. Computer Sciences Dept., University of Wisconsin, Madison, WI.

KNOBE, B. and KNOBE, K. 1976 A method for inferring context-free grammars. Information and Control 31, 129-146.

88
J. GERARD WOLFF

LENNEBERG, E. H. 1962 Understanding language without the ability to speak. Journal of Abnormal and Social Psychology 65, 419-425.
McCARTHY, D. 1954 Language development in children. In L. Carmichael (Ed.), Manual of Child Psychology, pp. 492-630. Wiley, New York.

MILLER, G. A. 1956 The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review 63, 8 1-97.

MINSKY, M. 1975 A framework for representing knowledge. In P. H. Winston (Ed.), The Psychology of Computer Vision. McGraw-Hill, New York.

MOERK, E. L. 1980 Relationships between parental input frequencies and children’s language acquisition: a reanalysis of Brown’s data. Journal of Child Language 7, 105-118.

MOESER, S. D. and BREGMAN, A. S. 1972 The role of reference in the acquisition of a miniature artificial language. Journal of Verbal Learning and Verbal Behaviour 11, 759-769.

MOESER, S. D. and BREGMAN, A. S. 1973 Imagery and language acquisition. Journal of Verbal Learning

and Verbal Behavior 12, 91-98.

OLDFIELD, D. C. 1954 Memory mechanisms and the theory of schemata. British Journal of Psychology 45, 14-23.

OLIVIER, D. C. 1968 Stochastic grammars and language acquisition mechanisms, Unpublished Doctoral thesis, Harvard University.

PETREY, S. 1977 Word associations and the development of lexical memory. Cognition 5, 57-71.

PINKER, S. 1979 Formal models of language learning. Cognition 7, 217-283.

POSTAL, P. 1964 Limitations of phrase structure grammars. In J. A. Fodor and J. J. Katz (Eds), The Structure of Language, pp. 137-151. Prentice-Hall, Englewood Cliffs, N.J.

POWER, R. J. D. and LONGUET-HIGGINS, H. C. 1978 Learning to count: a computational model of language acquisition. Proceedings of the Royal Society (London) B 200, 391-417.

ROSENFELD, A., HUANG, H. K. and SCHNEIDER, V. B. 1969 An application of cluster detection to text and picture processing. IEEE Transactions on Information Theory IT-15 (6), 672-681.

RUTH, S. S. and KREUTZER, P. 5. 1972 Data compression for large business files. Datamation (Sept.), pp. 62-66.

SALVETER, S. C. 1979 Inferring conceptual graphs. Cognitive Science 3, 141-166.

SCHANK, R. C. and ABELSON, R. P. 1977 Scripts, Plans. Goals and Understanding: an Enquiry into Human Knowledge Structures. Wiley, New York.

SCHUEGRAF, E. J. and HEAPS, H. S. 1974 A comparison of algorithms for data base compression by use of fragments as language elements. Information Storage and Retrieval 10, 309-3 19.

SIKLOSSY, L. 1972 Natural language learning by computer. In H. Simon and L. Siklossy (Eds), Representation and Meaning: Experiments with Information-Processing Systems. Prentice-Hall, Englewood Cliffs, NJ.

SLOBIN, D. I. 1971 Data for the symposium. In D. I. Slobin (Ed.), The Qntogenesis of Grammar, pp. 3-16. Academic Press, New York.

SMITH, N. V. 1973 The Acquisition of Phonology: a Case Study. Cambridge University Press. Cambridge.

STOLZ, W. 1965 A probabilistic procedure for grouping words into phrases. Language and Speech 8, 219-245.

VON B(K(SY, G. 1967 Sensory Inhibition. Princeton University Press, Princeton, N.J.

WEIR, R. 1962 Language in the Crib. Mouton, The Hague.

WEXLER, K. and CULICOVER, P. W. 1980 Formal Principles of Language Acquisition. M.I.T. Press, Cambridge, MA.

WILKES, A. W. and KENNEDY, R. A. 1969 Relationship between pausing and retrieval latency in sentences of varying grammatical form. Journal of Experimental Psychology 79, 241-245.

WINOGRAD, 1. 1972 Understanding Natural Language. Edinburgh University Press, Edinburgh.

WOLFF, J. G. 1975 An algorithm for the segmentation of an artificial language analogue. British Journal of Psychology 66, 79-90.

WOLFF, J. G. 1976 Frequency, conceptual structure and pattern recognition. British Journal of Psychology 67, 377-390.

WOLFF, J. G. 1977 The discovery of segments in natural language. British Journal of Psychology 68, 97-106.

WOLFF, J. G. l978a The discovery of syntagmatic and paradigmatic classes. Bulletin of the Association for Literary and Linguistic Computing 6 (2), 141-158.

LANGUAGE ACQUISITION, DATA COMPRESSION AND GENERALIZATION
89

WOLFF, J. G. 1978b Grammar discovery as data compression. Proceedings of the AISB/GI Conference on Artificial Intelligence, Hamburg, pp. 375-379.

WOLFF, J. G. 1980a Data compression, generalisation and overgeneralization in an evolving theory of language development. Proceedings of the AISB-80 Conference on Artificial Intelligence; Amsterdam, pp. Wolff—1-10.

WOLFF, J. G. 1980b Language acquisition and the discovery of phrase structure. Language and Speech 23, 255-269.

WOLFF, J. G. in preparation, a An optimisation account of the acquisition of ‘transformational’ and semantic cognitive structures.

WOLFF, J. G. in preparation, b Overview of a theory of language development.

WOODS, W. A. 1970 Transition network grammars for natural language analysis. Communications of the ACM 13, 591-606.

ZIPF, G. K. 1935 The Psycho-biology of Language. Houghton Mifflin, Boston.

ZIPF, G. K. 1949 Human Behaviour and the Principle of Least Effort. Hafner, New York.

