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Most of the AI which is in the news today is based on ‘deep neural networks’
(DNNs). Although DNNs are the basis for some notable successes, they have sev-

eral weaknesses, most of which may be overcome via the powerful concept of SP-
Multiple-Alignment, a a major discovery, which models diverse aspects
of intelligence via compression of information. Somewhat unexpectedly, a second
major discovery in this research is that much of mathematics, perhaps all
of it, may be seen as a set of techniques for compression of information,
and their application.

The concept of ‘deep neural network’ (DNN), which is the basis of most AI
systems today, started out as the concept of an ‘artificial neural network’ (ANN),
a computational model based loosely on our imperfect understanding of real neural
networks in brains.

DNNs could be derived from ANNs by adding extra layers of artificial neurons
(which makes DNNs ‘deep’), and by adding such things as ‘backpropogation’. With
developments like that, DNNs performed much better at tasks such as learning new
concepts and recognising things.

In later research, DNNs have provided the basis for AI systems with impres-
sive capabilities: such as beating the best human players at the game of Go, a
game which is very challenging for people; and greatly speeding up the process
of discovering how sequences of amino acids may be folded into three-dimensional
structures, a task which is needed in medical research but which is difficult and
slow to do without AI assistance.
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Understandably, successes with DNNs have led to much research with them,
with a widespread assumption that, despite their shortcomings, DNNs would pro-
vide a good foundation for further research towards the development of human-
level AI.

So what is this “radical alternative to current approaches to AI”, mentioned in
the title of this article? It was inspired originally by the ground-breaking discovery
by Claude Shannon, published in 1949, that the size of a body of information could
be defined precisely with numbers.

This discovery led to pioneering research in the 1950s and later, most notably
by Fred Attneave [1, 2], Horace Barlow [3, 4], and Satosi Watanabe [12, 13], around
the idea that the processing of information by brains and nervous systems, could
be expressed numerically. More specifically, it soon became clear that much of the
workings of brains and nervous systems could be understood in terms of informa-
tion compression (IC) by reducing the amount of repetition in it. Here, below, is
a couple of examples, and there are more in [19].

Barlow pointed out that, in mammals at least, the optic nerve (between each
eye and the brain), is too small by a wide margin to carry the enormous quantity
of visual information coming in to each eye. He suggested that things would work
better if information coming in to each eye was made smaller by compressing it.
In support of that idea, the neural process of ‘lateral inhibition’ in the retina of
each eye does indeed compress visual information.

Here’s another example. If, when we are looking at something, we close our
eyes for a moment and open them again, what do we see? Normally, it is the same
as what we saw before. But creating a single view out of the before and after views
means merging or unifying the two views to make one and thus compressing the
information, as shown schematically in Figure 1.
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Figure 1: A schematic view of how, if we close our eyes for a moment and open
them again, we normally merge the before and after views to make one. The
landscape here is from Wallpapers Buzz (www.wallpapersbuzz.com), reproduced
with permission.

It is interesting that, as early as 1969, Barlow recognised that IC might be
relevant to intelligence: “... the operations needed [for IC] have a rather fascinating
similarity to the task of answering an intelligence test, finding an appropriate
scientific concept, or other exercises in the use of inductive reasoning. Thus, [IC]
may lead one towards understanding something about the organization of memory
and intelligence, as well as pattern recognition and discrimination.”

One would think that, in the light of the two examples outlined above, with
more in [19], most modern attempts to create human-like AI would put IC at
centre-stage. But apart from some lip-service for the importance of IC within the
DNN literature, and some occasional weak claims for IC in AI, there have been few
serious attempts to frame IC as the basis for all or most aspects of intelligence.1

In my research, the start was postulating a general theory of AI called the SP
Theory of Intelligence (SPTI), to be realised eventually in the SP Computer Model
(SPCM). Here, ‘SP’ is short for ‘Simplicity’ and ‘Power’, two ideas which mean
the same as IC because IC may be seen as a search for Simplicity in a body of
information, while at the same time seeking to retain as much as possible of its
descriptive or explanatory Power.

The SPTI is conceived as a brain-like system as shown schematically in Figure
2, with New information (green) coming in via the senses (eyes and ears in the
figure), and with some or all of that information compressed and stored as Old

1Honourable exceptions include research by Ray Solomonoff [10, 11], Nick Chater and Paul
Vityányi [5], Marcus Hutter [7], and Jürgen Schmidhuber [8].
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information (red), in the brain.

Old
(compressed)

New
(not compressed)

Figure 2: Schematic representation of the SPTI. Reproduced from Figure 1 in [17].

In the SPTI, all kinds of knowledge are represented by SP-Patterns, where an
SP-Pattern is an array of SP-Symbols in one or two dimensions. An SP-Symbol
is simply a mark from an alphabet of alternatives where each SP-Symbol can be
matched in a yes/no manner with any other SP-Symbol. An SP-Symbol does not
have any hidden meaning, such as ‘add’ for the SP-Symbol ‘+’ in arithmetic, or
‘multiply’ for the SP-Symbol ‘×’, and so on. Any meaning attaching to an SP-
Symbol is provided by one or more other SP-Symbols with which it is associated.

After a fairly lengthy process of R&D, inspired in part by the bioinformatics
concept of a ‘multiple sequence alignment’, I arrived at the concept of an SP-
Multiple-Alignment (SPMA), expressed in the SPCM. An example of an SPMA
created by the SPCM is shown in Figure 3.

With this example, the general idea about how it works is: that row 0 shows a
sentence, ‘t h e p l u m s a r e r i p e’ which is a New SP-Pattern read in
from the system’s environment; and each of rows 1 to 9 shows an Old SP-Pattern,
which may be a grammatical structure or a word, drawn from a store of many Old
SP-Patterns.

The program finds one or more ‘good’ alignments amongst these SP-Patterns,
where ‘good’ means that a compressed version of the sentence may be created
using short codes from the stored SP-Patterns, and the IC achieved via an SPMA
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is relatively large.
The overall result in the figure shows how the sentence may be analysed into

its grammatical parts and subparts, in much the same way that a human specialist
in grammatical analysis would analyse the sentence.

0 t h e p l u m s a r e r i p e 0

| | | | | | | | | | | | | | |

1 | | | Nrt 6 p l u m #Nrt | | | | | | | | 1

| | | | | | | | | | | | |

2 | | | N Npl Nrt #Nrt s #N | | | | | | | 2

| | | | | | | | | | | | |

3 D 17 t h e #D | | | | | | | | | | 3

| | | | | | | | | | | |

4 NP 0a D #D N | #N #NP | | | | | | | 4

| | | | | | | | | |

5 | | | V Vpl 11 a r e #V | | | | 5

| | | | | | | | | |

6 | | | VP 1 V | #V A | | | | #A #VP 6

| | | | | | | | | | | |

7 S Num ; NP | #NP VP | | | | | | | #VP #S 7

| | | | | | | | | |

8 Num PL ; Npl Vpl | | | | | | 8

| | | | | |

9 A 21 r i p e #A 9

Figure 3: The best SPMA created by the SPCM that achieves the effect of parsing
a sentence (‘t h e p l u m s a r e r i p e’) into its parts and sub-parts, as
described in the text. The sentence in row 0 ia a New SP-Pattern, while each of
the rows 1 to 9 contains a single Old SP-Pattern, drawn from a relatively-large
repository of Old SP-Patterns. Reproduced from Figure A2 in [15].

It turns out that the SPMA concept is remarkably powerful and largely respon-
sible for the versatility of the SPTI across several different aspects of intelligence.
That versatility includes strengths in several different aspects of how natural lan-
guages may be processed, strengths in several different aspects of the recognition
and retrieval of patterns, strengths in several different kinds of reasoning, and
more.

In keeping with the versatility of the SPMA across diverse aspects of intelli-
gence, it has been shown to have versatility across several different techniques for
IC.

I believe it is fair to say that the SP-Multiple-Alignment concept is a major
discovery with the potential to be as significant for an understanding of intelligence
as is the concept of DNA for an understanding of biology. It may prove to be the
‘double helix’ of intelligence!

The SPMA is also largely responsible for the strengths of the SPTI in overcom-
ing several weaknesses of DNNs. Because DNNs are so dominant in AI research
today, their weaknesses are in effect described in a book by Martin Ford which
is about problems in AI research described by recognised experts in AI [6]. The
following summary describes several of those problems briefly, plus a few others
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not discussed in the book, each problem with a summary of how the SPTI may
solve it.

1. The symbolic versus sub-symbolic divide: The need to bridge the divide be-
tween symbolic and sub-symbolic kinds of knowledge and processing [22,
Section 2]. The concept of an SP-Symbol can represent a relatively large
symbolic kind of thing such as a word or a relatively fine-grained kind of
thing such as a pixel.

2. Errors in recognition: The tendency of DNNs to make large and unexpected
errors in recognition [22, Section 3]. The overall workings of the SPTI and
its ability, in the recognition of patterns, to correct errors in data suggests
that it is unlikely to suffer from these kinds of error.

3. Natural languages: The need to strengthen the representation and processing
of natural languages, including the understanding of natural languages and
the production of natural language from meanings [22, Section 4]. The SPTI
has clear potential in the representation and processing of several aspects of
natural language.

4. Unsupervised learning: Overcoming the challenges of unsupervised learning.
Although DNNs can be used in unsupervised mode, they seem to lend them-
selves best to the supervised learning of tagged examples [22, Section 5]. In
contrast, learning in the SPTI is entirely unsupervised.

It is clear that most human learning, including the learning of our first lan-
guage or languages [14], is achieved largely via unsupervised learning.

Incidentally, a working hypothesis in the SP programme of research is that
unsupervised learning can be the foundation for all other forms of learning,
including learning by imitation, learning by being told, and so on.

5. Generalisation, over-generalisation, and under-generalisation: The need for
a coherent account of generalisation, over-generalisation (under-fitting) and
under-generalisation (over-fitting) [22, Section 6] in unsupervised learning.
In the SPTI, those three things are achieved entirely via IC.

6. Reduce or eliminate the corrupting effect of ‘dirty data’ in unsupervised learn-
ing: Although this is not mentioned in Ford’s book [6], there is the problem
of reducing or eliminating the corrupting effect of errors in the data which is
the basis for unsupervised learning, a problem for which the SPTI provides
a solution.
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7. One-Shot Learning: Unlike people, DNNs are ill-suited to the learning of
usable knowledge from one exposure or experience. The ability to learn
usable knowledge from a single exposure or experience is an integral and
important part of the SPTI ([22, Section 7]).

8. Transfer learning: Although transfer learning—incorporating old learning in
newer learning—can be done to some extent with DNNs [9, Section 2.1],
DNNs fail to capture the fundamental importance of transfer learning for
people, or transfer learning’s integral and important part of how the SPTI
works [22, Section 8].

9. Reduced demands for data and for computational resources compared with
DNNs: The ability of the SPTI to learn from a single exposure or experience
(above), and the fact that transfer learning is an integral part of how it works
(above), is likely to mean that, compared with DNNs, the SPTI will make
greatly reduced computational demands and greatly reduced demands for
data [22, Section 9]:

10. Transparency: By contrast with DNNs, which are opaque in how they rep-
resent knowledge, and how they process it, the SPTI is entirely transparent
in both the representation and processing of knowledge [22, Section 10].

11. Probabilistic reasoning: The SPTI is entirely probabilistic in all its inferences,
including the forms of probabilistic reasoning described in [16, Chapter 7],
[17, Section 1].

12. Commonsense reasoning and commonsense knowledge: Unlike probabilis-
tic reasoning, the area of commonsense reasoning and commonsense knowl-
edge is surprisingly challenging. With qualifications, the SPTI shows some
promise in this area [15, 18], [22, Section 12].

13. How to minimise the risk of accidents with self-driving vehicles: Notwith-
standing the hype about self-driving vehicles, there are still significant prob-
lems in minimising the risk of accidents with such vehicles. The SPTI has
potential in this area [21], [22, Section 13].

14. Compositionality in the representation of knowledge: DNNs are not well
suited to the representation of Part-Whole Hierarchies or Class-Inclusion
Hierarchies. By contrast, the SPTI has robust capabilities in this area [22,
Section 14].

15. Establishing the importance of IC in AI research: There is a need to raise
awareness of the significance of IC in AI. The importance of IC in the work-
ings of brains and nervous systems is described in [19] and its importance in

7



the SPTI is described in this article and most other publications about the
SPTI [22, Section 15].

16. Establishing the importance of IC across diverse aspects of AI and human
cognition: A point which deserves emphasis which was not mentioned in
[22] is that, while there is some recognition amongst other researchers of the
importance of IC in machine learning, there appears to be less recognition
of the importance of IC in other aspects of intelligence.

The importance of IC in the SPTI across several aspects of intelligence is a
major strength of the SPTI.

17. Establishing the importance of a biological perspective in AI research: There
is a need to raise awareness of the importance of a biological perspective in
AI research. This is very much part of the SPTI research [22, Section 16].

18. Distributed versus localist representations for knowledge: A persistent issue
in studies of human learning, perception, and cognition, and in AI, is whether
knowledge in brains is represented in distributed or localist form, and which
of those two forms works best in AI systems. DNNs employ a distributed
form for knowledge, but the SPTI, which is firmly in the localist camp, has
distinct advantages compared with DNNs. This is in keeping with other
evidence for localist representations in brains [22, Section 17].

19. The learning of structures from raw data: DNNs are weak in the learning of
structures from raw data, either linuistic or non-linguistic. By contrast, this
is a clear advantage in the workings of the SPTI [22, Section 18].

20. Overcoming the limited scope for adaptation in deep neural networks: An
apparent problem with DNNs is that, unless many DNNs are joined together,
each one is designed to learn only one concept, and the learning is restricted
to what can be done with a fixed set of layers. By contrast, the SPTI, like
people, can learn multiple concepts, and these multiple concepts are often
in hierarchies of classes or in part-whole hierarchies. This adaptability is
largely because, via the SP-Multiple-Alignment concept, many different SP-
Multiple-Alignments may be created in response to one body of data [22,
Section 20].

21. The problem of catastrophic forgetting: Although there are somewhat clumsy
workarounds for this problem, an ordinary DNN is prone to the problem of
catastrophic forgetting, meaning that new learning wipes out old learning.
There is no such problem with the SPTI which may store new learning
independently of old learning, or form composite structures which preserve
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both old and new learning, in the manner of transfer learning (above) [22,
Section 21].

22. A weakness of DNNs not mentioned in [22]: A matter which has become
increasingly clear with further thought is that, despite the impressive things
that have been done with DNNs,2 DNNs are relatively restricted in the as-
pects of intelligence that, without augmentation, they can model. They show
little of the versatility of the SPTI in modelling diverse aspects of intelligence.

Somewhat unexpectedly, a second major discovery in this research is that much
of mathematics, perhaps all of it, may be seen as a set of techniques for IC, and
their application [20].

In summary, the concept of SP-Multiple-Alignment is largely responsible for
the versatility of the SP Theory of Intelligence, together with the SP Computer
Model, in modelling diverse aspects of intelligence, with information compression
as a unifying theme.

As a vehicle for further research, it is envisaged that an industrial-strength SP
Machine will be developed, based on the SP Computer Model with high levels of
parallel processing. It is shown schematically in Figure 4.

2Forming part of a system that has beaten the best human players at the game of Go, and
forming part of a system that has automated the difficult task of working out likely 3D
structures for sequences of amino-acid residues.
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SP Theory and SP Computer Model

SP MACHINEHigh parallel
In the cloud

Open source
Good user interface

Representation of knowledge Natural language processing

Several kinds of reasoning Planning & problem solving

Information compression Unsupervised learning

Pattern recognition Information retrieval

MANY APPLICATIONS

Figure 4: Schematic representation of the development and application of the
proposed SP machine. Reproduced from Figure 2 in [17].
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