
Developing multi-level grammars in a framework of information compression by
multiple alignment, unification and search

Gerry Wolff
CognitionResearch.org.uk

Menai Bridge, UK.
jgw@cognitionresearch.org.uk

Abstract
This paper is a progress report on recent work de-
veloping the SP framework for computing and cog-
nition to perform unsupervised grammatical infer-
ence. The SP70 computer model, presented in pre-
vious publications, is briefly described, highlight-
ing the main weakness of the model, that, while it
can discover structure at the levels of sentences and
words, it is not able to discover intermediate levels
of structure such as phrases or clauses.
The main body of this paper describes SP71, a suc-
cessor to SP70, that largely overcomes the weak-
ness of SP70. While there is still work to be done
in refining the model, it can abstract intermediate
levels of structure from appropriate input and it can
create plausible grammars for those kinds of raw
data.
The body of SP71 is an iteration of two phases, one
phase that derives new grammatical patterns from
parsings of the input and a second phase that com-
piles grammars from these patterns that are ‘good’
in terms of principles of Minimum Length Encod-
ing and discards structures that are not proving use-
ful in those terms. These two phases are organised
so that intermediate levels of structure may be ab-
stracted.

1 Introduction
This paper is a progress report on recent work developing the
SP theory of computing and cognition to accommodate gram-
matical inference, aiming to overcome a particular weakness
an earlier model which will be described.

The SP theory, which has been under development since
1987, aims to integrate a wide range of concepts in computing
and cognition within one relatively simple conceptual frame-
work. It is founded on principles of Minimum Length Encod-
ing pioneered by[Solomonoff, 1964; Wallace and Boulton,
1968; Rissanen, 1978] and it incorporates a complimentary
idea with a long history in cognitive psychology: that many
aspects of the workings of brains and nervous systems may
be understood as information compression.

The theory is conceived as an abstract model that receives
New information from its environment and transfers this in-

formation to a repository ofOld information. At the same
time, it is designed to compress the New information as much
as possible by searching for patterns or parts of patterns that
are the same and merging orunifying those matching pat-
terns or parts of patterns. An important part of this process
is the building ofmultiple alignments, similar to multiple
alignments in bioinformatics but with important differences.
An overview of this programme of research may be found in
[Wolff, 2003a] and earlier papers that are cited therein.

1.1 The SP Theory and Unsupervised
Grammatical Inference

In current SP models, all knowledge in the system is encoded
as a set of one-dimensional sequences orpatternsand these
may be structured to be formally equivalent to a context-free
or context-sensitive grammar, as described in[Wolff, 2000].1

Thus learning in the system may be cast as grammatical in-
ference.

Although, at an abstract level, the SP framework is a model
for learning, it is not until relatively recently that this aspect of
the framework has been addressed in detail. In what follows,
I shall briefly describe the SP70 computer model—a first
model of grammatical inference within the SP framework—
and then in more detail I shall describe the SP71 model, de-
signed to overcome a significant weakness in the SP70 model.

2 The SP70 Model and Its Strengths and
Limitations

The SP70 computer model, described in[Wolff, 2003b;
2002], receives a set of sentences as input and derives one
or more alternative sets of patterns, each set representing a
grammar for the original sentences. Each of these alternative
grammars has a measure of ‘goodness’ in terms of principles
of Minimum Length Encoding.

A key point to note is that the original sentences are pre-
sented as a sequence of letters without any kind of spacing or
other marker between one word and the next. Thus, although
the system does not have any concept of ‘word’, it must dis-
cover or infer which subsequences of the original sentences
are significant and would be recognised by people as words.

1It is envisaged that, in future development of the framework, the
concept ofpatternmay be generalised to two-dimensional arrays of
symbols but this has not yet been attempted.

It must also discover, for each of several different syntactic
contexts, groupings of words that are distributionally equiva-
lent in the given context and it must discover or construct an
abstract pattern that records the sequence of words and dis-
junctive groupings of words. This abstract pattern is equiva-
lent to the rule in a conventional grammar that represents the
concept of ‘sentence’.

The development of this model was a major step forward
and corroborated the anticipated value of principles of Mini-
mum Length Coding in the inference of plausible grammars
from raw input without the kinds of ‘supervision’ described
by [Gold, 1967] and without explicit marking of word bound-
aries within sentences and without information about distri-
butional groupings of words. However, a significant weak-
ness of the SP70 model is that it is only able to infer struc-
tures at two levels of abstraction: words and sentences. It is
not capable of inferring intermediate levels of structure such
as ‘phrases’ or ‘clauses’ and this weakness is inherent in the
design of the model, not merely an accidental feature of the
test materials that have been used.

Although the SP framework can accommodate context-
sensitive grammars (as described in[Wolff, 2000]), no at-
tempt has yet been made to learn grammars of this type. All
the work to date, including work described in this paper, has
concentrated on the learning of context-free phrase-structure
grammars.

3 The SP71 Model: Learning Grammars with
Intermediate Levels of Structure

The SP71 model is intended to learn grammars with interme-
diate levels of structure. Although there is still work to be
done in refining the model, it can already demonstrate how
such grammars may be learned within the SP framework. The
description of the model in this section will explain the over-
all organisation of the model and key features of how it works.
After a more detailed description of the model in the follow-
ing sections, Section 7, below, explains how the model learns
intermediate levels of structure.

The basic elements of the model are similar to SP70 but
some key changes have been made in some of those basic
elements and the overall structure of the program—shown
in Figure 1—has been changed quite radically. Initially, the
New patterns (representing the sentences for which one or
more grammars are required) are read in to the program and
from these patterns the program finds the frequency of occur-
rence of each symbol type. From these frequencies, it calcu-
lates the number of bits of storage to be associated with each
symbol using the Shannon-Fano-Elias method (see[Cover
and Thomas, 1991]). Thesebit costsare used in the evalua-
tion of multiple alignments and in the evaluation of grammars
that are compiled by the program.

There are two main phases in the main body of the model:
the first one generates patterns to be added to Old and the sec-
ond one selects amongst those many patterns by generating
alternative grammars and replacing all the Old patterns with
the patterns in the bestN grammars, whereN is normally
about 3. These two phases are applied to each New pattern in
succession until all the New patterns have been processed.

4 Phase 1: the Derivation of Patterns to be
Added to Old

As in SP70, each New pattern is ‘parsed’ by the formation
of multiple alignmentsbetween the New pattern and one or
more Old patterns (step P1.2 in Figure 1). In brief, a mul-
tiple alignment in this context is an arrangement of patterns
that shows matching of symbols between patterns, with judi-
cious ‘stretching’ of patterns where necessary. And the sys-
tem is designed to seek out multiple alignments that allow the
New pattern to be encoded economically in terms of the Old
patterns, in accordance with principles of Minimum Length
Encoding (see[Wolff, 2000]). In broad terms, this means
maximising the amount of matching between patterns.

If an alignment is ‘full’, meaning that all relevant symbols
are matched, then it is no use for the derivation of new pat-
terns. What is needed in Phase 1 are alignments that are par-
tial, meaning that there are unmatched symbols in the New
pattern, or one of the Old patterns, or both.

4.1 A Simple Example
In simple cases, patterns are derived from multiple align-
ments in almost exactly the same way as in SP70. From an
alignment like the one shown in Figure 2, the system creates
patterns like those shown in Figure 3.

0 w e w a l k f a s t 0
| | | | | |

1 < #1 w e r u n f a s t > 1

Figure 2: A simple alignment created by SP71. By conven-
tion in all alignments, the New pattern is shown in row 0 and
Old patterns are shown in other rows, one pattern per row.

< 13 w e >
< 14 #17 r u n >
< 14 #18 w a l k >
< 15 f a s t >
< #19 < 13 > < 14 > < 15 > >

Figure 3: Patterns that the system derives from the alignment
shown in Figure 2

In deriving patterns from an alignment, the system looks
for coherent sequences of matched symbols or coherent se-
quences of unmatched symbols, always excluding ‘identifi-
cation’ symbols (ID-symbols) like ‘< #1 ... >’ in row 1 of
Figure 2. The system adds new ID-symbols to patterns that it
has derived—as can be seen in the first four patterns in Fig-
ure 3. And it uses copies of those ID-symbols as references
within the fifth pattern in the same figure. This last pattern
is the ‘abstract’ pattern mentioned earlier that describes the
overall structure of the original sentences and corresponds to
the ‘sentence’ rule in a conventional grammar.

Notice that ‘r u n’ and ‘w a l k’ have both been given the
ID-symbol ‘14’ and a copy of that symbol is also used in
the middle of the fifth pattern in the figure, showing that ‘r
u n’ and ‘w a l k’ are, for syntactic purposes, interchangeable
in that position in the sentence. This is the beginning of a
grammatical class like ‘verb’ in a fully-developed grammar.

SP71()
{

1 Read a set of patterns into New. Each New pattern is normally a sentence
expressed as a sequence of letters without spaces or punctuation
between words. Old is initially empty.

2 Make a preliminary measure of the frequencies of occurrence of the symbol
types in the New patterns. From these frequencies, derive a bit cost
for each symbol type using the Shannon-Fano-Elias method.

3 While (there are unprocessed patterns in New)
{

PHASE 1: DERIVE PATTERNS FROM PARTIAL ALIGNMENTS.
P1.1 Identify the first or next pattern from New as the ’current’

New pattern (CNP).
P1.2 Parse the CNP by multiple alignment using the patterns that

are currently in Old.
P1.3 Derive new patterns from those multiple alignments that are

’partial’, as explained in the text.
P1.4 Add the derived patterns to Old together with a copy of the

CNP to which ’identification’ symbols have been added (ID-CNP).
PHASE 2: COMPILE ALTERNATIVE GRAMMARS.

P2.1 Reparse all the New patterns up to and including the CNP.
P2.2 From all the multiple alignments that are formed, select a subset

that are ’full’ alignments, as explained in the text.
P2.3 From the full alignments, derive frequencies of Old patterns,

frequencies of symbol types, and bit costs for symbol types.
P2.4 From the full alignments, compile a set of alternative grammars for

all the New patterns up and including the CNP, as explained in
the text.

P2.5 Delete all the Old patterns and replace them with the patterns in
the best N grammars that have been found (where N is typically
about 3), together with all ID-CNPs up to and including the
current one. Clean unnecessary ID-symbols from this set of Old
patterns.

P2.6 Delete all grammars ready for the next iteration, except when the
CNP is the last New pattern.

}
4 Clean and tidy the best three grammars and print.

}

Figure 1: The organisation of SP71. Key parts of the process are explained in the text.

The symbols ‘#17’ and ‘#18’ in ‘< 14 #17 r u n>’ and ‘<
14 #18 w a l k>’ are ‘discrimination’ ID-symbols that allow
the two patterns to be distinguished from each other by their
ID-symbols.

With regard to the pattern ‘< #19 < 13 > < 14 > < 15
> >’, the symbols ‘< #19 ...>’ are ID-symbols for the pat-
tern whereas the symbols ‘< 13> < 14> < 15>’ represent
the substance or ‘contents’ of the pattern and are designated
C-symbols. In general, ID-symbols are normally at the be-
ginning and end of each pattern while C-symbols are the re-
maining symbols within the body of the pattern.

A point to notice about the derivation of new patterns is
that ID-symbols and copies of them in the abstract pattern are
newly-created by the system. Consequently, they do not at
this stage have any value for their frequency of occurrence or
bit cost from step P2.3 of the framework shown in Figure 1.
As a temporary measure, an approximate value is assigned to
them. However, when step P2.3 is reached, these approximate
values are replaced by much more precise values derived from
the patterns and symbols that are actually in Old at that time.

4.2 Deriving Patterns from Alignments Containing
Three or More Patterns

Figure 4 shows a slightly more complicated alignment in
which ‘y o u’ in row 0 and ‘< 13>’ in row 3 are not matched
to anything. As before, we ignore the ID-symbols in the Old
pattern which, in this case, are the symbols ‘< #19 ... >’ in
the pattern in row 3.

The alignment shown in Figure 4 raises the general ques-
tion “How does the system deal with alignments that contain
more than two patterns?” The answer depends on an under-
standing of how alignments are formed. In SP71, alignments
are built in a step-wise manner, adding one row at a time,
always at the bottom. This is different from all earlier SP
models where alignments may be built by combining pairs
of alignments, either of which may contain two or more pat-
terns. Because alignments are built in this step-wise man-
ner in SP71, it is possible to enforce the following rule: “An
alignment can only become part of a larger alignment if all its
C-symbols are matched.” As soon as an alignment is formed
in which some of its C-symbols are unmatched, then it cannot
be part of any larger alignment. This means that in any partial
alignment, of any complexity, there are only two patterns to

0 y o u r u n f a s t 0
| | | | | | |

1 < 18 14 #17 r u n > | | | | 1
| | | | | | |

2 | | | < 23 19 15 f a s t > 2
| | | | | |

3 < #19 < 13 > < 14 > < 15 > > 3

Figure 4: A four-row alignment from which new patterns are derived.

be considered: the New pattern (which by convention is al-
ways shown in row 0) and the Old pattern in the last row to
be added, which is always the bottom row of the alignment.

With the alignment shown in Figure 4, the system isolates
the unmatched symbols ‘y o u’ from the New pattern and
the unmatched symbols ‘< 13 >’ from row 3 (ignoring the
ID-symbols ‘< #19 ... >’). Rather than assigning new ID-
symbols to both patterns, the system recognises that ‘< 13
>’ is already a ‘reference’ to a pattern or class of patterns
and it assigns the ID-symbols ‘< 13 ... >’ to ‘y o u’, which
converts it into ‘< 13 y o u>’. In short, ‘y o u’ is assigned
to the same syntactic class as ‘< 13 w e>’ from Figure 3.
Discrimination ID-symbols are also added.

The system does not need to do anything about the matched
sequences ‘r u n’ and ‘f a s t’ because these are already rep-
resented by Old patterns with appropriate ID-symbols.

4.3 Untidiness in the Derivation of Patterns

The examples presented so far may have given the impres-
sion that the process of deriving new patterns always accords
exactly with one’s intuitions about what would be appropri-
ate for a given set of patterns. In fact, the process is very
untidy and leads to the creation of many patterns which are
very different from what one might think was ‘correct’ for a
given set of New patterns. For example, an alignment like
the one shown in Figure 5 leads to the creation of patterns
like ‘w’, ‘e’, ‘r u n f’, ‘a’, ‘l k f a’ and ‘s t’, each with added
ID-symbols. There is also an abstract pattern to tie them all
together.

0 w e w a l k f a s t 0
| | | |

1 < 12 #13 e r u n f a s t > 1

Figure 5: An ‘untidy’ alignment leading to the creation of
counter-intuitive patterns.

Another source of untidiness is that, as learning proceeds,
many patterns acquire a diverse range of ID-symbols. For ex-
ample, a pattern that starts out as ‘w e’ finishes as ‘< 150 147
91 85 13 #23 w e>’ and the pattern ‘s l o w l y’ eventually
becomes ‘< 149 131 87 #74 s l o w l y>’. Other less extreme
examples can be seen in rows 1 and 2 of Figure 4.

The reason for this untidiness is that any given pattern may
be derived from several different alignments. Since, during
the learning process, it is not possible to know what the final
‘best’ result will be, an ID-symbol is added to a given pattern
for each of the several different alignments (contexts) from
which it was derived.

As we shall see, the system is able, eventually, to find in-
tuitively plausible grammars despite these two kinds of un-
tidiness that are so prominent during Phase 1 of the learning
process.

5 Phase 2: the Compiling of Alternative
Grammars

In Phase 2, for every ‘current’ pattern from New (CNP), the
program reparses every New pattern up to and including the
CNP and then it selects all the ‘full’ alignments, meaning
alignments in which there is a match for every New symbol
and every C-symbol in every Old pattern in the alignment.
From these full alignments, it compiles a set of ‘good’ gram-
mars for the New patterns up and including the CNP using
methods outlined in items P2.3 and P2.4 of Figure 1 that are
the same as the methods used in SP70.

The process of compiling good grammars is essentially a
hill-climbing search through the abstract space of alternative
grammars, trying to minimise(G + E) for each grammar,
whereG is the size of the given grammar (in bits) andE is
the size of all the New patterns (in bits) after they have been
encoded in terms of the grammar. Minimising(G + E) is, of
course, the central idea in grammar induction using principles
of Minimum Length Encoding.

The grammars are built in stages, at first trying to minimise
(G + E) for the first New pattern alone, then trying to min-
imise(G + E) for the first and second New pattern, followed
by the first, second and third, and so on.

6 Cleaning and Tidying of ID-Symbols

As was described in Section 4.3, the second source of un-
tidiness in the learning process is the way any given pattern
can acquire many different ID-symbols derived from different
alignments.

In any one grammar, many of these ID-symbols will be ir-
relevant to the structure of the grammar. So any grammar can
be ‘cleaned’ by removing ID-symbols that have no function
in the grammar, meaning that it is never used as a reference
from one pattern to another or it is not needed as a top-level
reference for a pattern. SP71 contains a procedure for clean-
ing any grammar when that is required.

After a grammar has been cleaned, many of the numbers
used as the names of ID-symbols will be unnecessarily high.
From a functional standpoint, this does not matter but from a
cosmetic point of view it looks rather odd. So any grammar
that has been cleaned may also be ‘tidied’ by renumbering the
ID-symbols, starting from 1.

In SP71, the set of Old patterns that is compiled in step
P2.5 of Figure 1 is cleaned to remove unnecessary ID-
symbols before the next iteration of step 3 of the program.
The ID-symbols are not renumbered at this stage because it is
necessary to maintain consistency across iterations of step 3.

Right at the end of the program (step 4 in Figure 1), the best
three grammars are cleaned and the remaining ID-symbols
are renumbered so that the final grammars look presentable.

7 The Creation of Grammars with
Intermediate Levels of Structure

The principles of Minimum Length Encoding dictate that a
structure should be recognised within a grammar if it is ‘use-
ful’, meaning that it helps to minimise(G + E). As a rule of
thumb, structures are useful if they occur relatively frequently
and if they represent a relatively large amount of the raw data.

These principles should apply if one sentence pattern is
used within another. For example, ‘w e r u n’ can occur as
a free-standing sentence and it can also occur as part of a
sentence like ‘w e r u n f a s t’. Given a set of sentences
that contains both kinds of sentence, principles of Minimum
Length Encoding should lead to the creation of grammars in
which the abstract pattern that describes the short sentences
would be referenced within the abstract pattern that describes
the longer sentences. A grammar of that sort would contain
an intermediate levels of structure of a kind that is beyond the
scope of SP70.

The SP71 model is not yet fully robust in all situations but
it does have the main elements needed to recognise the kind
of intermediate structure just described. In what follows, a
selection of results are shown to illustrate what it can do. The
kind of input used is the set of patterns shown in Figure 6,
or the same input with the short sentences coming before the
long ones.

w e r u n f a s t
w e r u n s l o w l y
w e w a l k f a s t
w e w a l k s l o w l y
t h e y r u n f a s t
t h e y r u n s l o w l y
t h e y w a l k f a s t
t h e y w a l k s l o w l y
w e r u n
w e w a l k
t h e y r u n
t h e y w a l k

Figure 6: A set of New patterns for SP71 containing longer
sentences and shorter sentences (at the end) which can be
seen to occur within the longer sentences.

Given that the longer sentences come before the shorter
ones, the program forms alignments like the one shown in
Figure 7. In this alignment, the abstract pattern in row 3 is
derived from the longer sentences that the program has seen.
The New pattern in the alignment is one of the shorter sen-
tences. From this alignment, the program derives the patterns
‘< 145 #182< 13> < 14> >’ and ‘< #183< 145> < 15
> >’. The first one is derived from those C-symbols in row

3 that have been matched and it describes the structure of the
short sentence in row 0. This first pattern has been marked
with the ID-symbol ‘145’ and a copy of that symbol appears
within the second pattern. In effect, there is a reference to
the first pattern within the second pattern and this reference is
followed by ‘< 15 >’ which is derived from the unmatched
C-symbols in row 3 of the alignment. Thus the second pat-
tern, ‘< #183< 145 > < 15 > >’, describes the structure
of the longer sentences by means of a reference to the shorter
sentence type within it. This is the kind of intermediate level
of structure and hierarchical relationship that is beyond the
scope of SP70.

0 w e r u n 0
| | | | |

1 < 13 #22 w e > | | | 1
| | | | | |

2 | | | < 77 14 #23 r u n > 2
| | | | | |

3 < #25 < 13 > < 14 > < 15 > > 3

Figure 7: A partial alignment created by SP71 when the
longer sentences are presented before the shorter ones.

Given that the shorter sentences come before the longer
ones, the program forms alignments like the one shown in
Figure 8. From this it derives the patterns ‘< 25 #34 f a s
t >’, ‘ < 24 #6 < 1 > < 3 > >’ and ‘< #35 < 24 > <
25 > >’. The second of these describe the structure of a
short sentence and it contains the ID-symbol ‘24’. A copy of
this symbol appears within the third pattern which means, in
effect that the first pattern has been referenced from within
the third pattern. As before, the program has recognised the
intermediate level of structure and hierarchical relationship
that is implicit in the original sentences.

0 w e r u n f a s t 0
| | | | |

1 < 1 #4 w e > | | | 1
| | | | | |

2 | | | < 2 3 #5 r u n > 2
| | | | | |

3 < #6 < 1 > < 3 > > 3

Figure 8: A partial alignment created by SP71 when the
shorter sentences are presented before the longer ones.

These intermediate results are reflected in the final gram-
mars for all 12 sentences that are produced by the program.
Very similar results are produced regardless of whether the
shorter sentences are presented before the longer sentences
or vice versa. Here, the results are described when the
longer sentences are presented before the shorter ones. In
this case, the second-best grammar produced by the program,
after cleaning and tidying, is the grammar shown in Figure
9. This second-best grammar describes the structure of the
longer sentences by means of the pattern ‘< #1 < 2 > < 4
> >’ that contains a reference, ‘< 2 >’ to the shorter sen-
tence described by the pattern ‘< 2 < 1 > < 3 > >’. The
second-best grammar has captured the intermediate level of
structure and the hierarchical relationship that is implicit in
the original sentences. The best grammar is similar except

that it describes the structure of the shorter and longer sen-
tences separately without any hierarchical reference from one
to the other.

< 3 #3 w a l k >
< 1 #4 w e >
< 3 #2 r u n >
< 4 #7 f a s t >
< 1 #5 y o u >
< 5 #6 s l o w l y >
< 2 < 1 > < 3 > >
< #1 < 2 > < 4 > >

Figure 9: The second best grammar produced by SP71 when
the longer sentences are presented before the shorter ones.

These results are in accordance with our expectations ex-
cept that one might think that the best and second-best gram-
mars are in the wrong order. It is not clear at this stage
whether this ordering of the grammars is intrinsic to the data
or whether it reflects a defect in the design or implementation
of the program.

Alert readers will have spotted another defect in the gram-
mar shown in Figure 9: the reference ‘< 4>’ at the end of the
last pattern is appropriate for ‘< 4 #7 f a s t>’ but not for ‘<
5 #6 s l o w l y>’. This is clearly due to a deficiency in the
program which should be remedied by further development.

8 Principles of Minimum Length Encoding
As successive New patterns are processed, SP71 records the
values ofG, E and(G + E) for each grammar found. For
the set of patterns shown in Figure 6, these values for the
best grammar at each stage are plotted in Figure 10 together
with the cumulative value of the sizes of the New patterns in
unprocessed form (marked asO) and values for the overall
compression achieved (calculated as(G + E)/O)).

Figure 10: Plots showing changing values forG, E and(G+
E) for the best grammar found as successive New patterns
are processed from the set shown in Figure 6. Other plots are
described in the text.

It is clear from these graphs that, in accordance with prin-
ciples of Minimum Length Encoding, the value of(G + E)

is quickly exceeded by the corresponding value ofO and, ac-
cordingly, that values for compression fall steadily as learning
proceeds.

9 Conclusion
The SP71 model has demonstrated significant success in ab-
stracting intermediate levels of structure from appropriate in-
put, as well as structures at the lowest and highest levels of
abstraction. Further development and refinement is needed to
overcome shortcomings in the model and the model must be
tested on a wider range of inputs to establish its robustness
and generality for the abstraction of plausible grammars from
realistic data.

References
[Cover and Thomas, 1991] T. M. Cover and J. A. Thomas.

Elements of Information Theory. John Wiley, New York,
1991.

[Gold, 1967] M. Gold. Language identification in the limit.
Information and Control, 10:447–474, 1967.

[Rissanen, 1978] J. Rissanen. Modelling by the shortest
data description.Automatica-J, IFAC, 14:465–471, 1978.

[Solomonoff, 1964] R. J. Solomonoff. A formal theory of
inductive inference. parts I and II.Information and
Control, 7:1–22 and 224–254, 1964.

[Wallace and Boulton, 1968] C. S. Wallace and D. M.
Boulton. An information measure for classification.
Computer Journal, 11(2):185–195, 1968.

[Wolff, 2000] J. G. Wolff. Syntax, parsing and production
of natural language in a framework of information
compression by multiple alignment, unification and
search.Journal of Universal Computer Science,
6(8):781–829, 2000. Copy:
http://arxiv.org/abs/cs.AI/0307014.

[Wolff, 2002] J. G. Wolff. Unsupervised learning in a
framework of information compression by multiple
alignment, unification and search. Technical report,
CognitionResearch.org.uk, 2002. Copy:
http://arxiv.org/abs/cs.AI/0302015.

[Wolff, 2003a] J. G. Wolff. Information compression by
multiple alignment, unification and search as a unifying
principle in computing and cognition.Artificial
Intelligence Review, 19(3):193–230, 2003. Copy:
http://arxiv.org/abs/cs.AI/0307025.

[Wolff, 2003b] J. G. Wolff. Unsupervised grammar
induction in a framework of information compression by
multiple alignment, unification and search. In C. de la
Higuera, P. Adriaans, M. van Zaanen, and J. Oncina,
editors,Proceedings of the Workshop and Tutorial on
Learning Context-Free Grammars, pages 113–124, 2003.
This workshop was held in association with the 14th
European Conference on Machine Learning and the 7th
European Conference on Principles and Practice of
Knowledge Discovery in Databases (ECML/PKDD
2003), September 2003, Cavtat-Dubrovnik, Croata. Copy:
http://arxiv.org/abs/cs.AI/0311045.

